# Coefficient bounds for a subclass of bi-univalent functions associated with Dziok-Srivastava operator

## Main Article Content

## Abstract

In this article, we represent and examine a new subclass of holomorphic and bi-univalent functions defined in the open unit disk $\mathfrak{U}$, which is associated with the Dziok-Srivastava operator. Additionally, we get upper bound estimates on the Taylor-Maclaurin coefficients $|a_{2}|$ and $|a_{3}|$ of functions in the new class and improve some recent studies.

## Article Details

## References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351. Google Scholar

[2] M. K. Aouf, R. M. El-Ashwah, and A. Abd-Eltawab, New Subclasses of Biunivalent Functions Involving Dziok-Srivastava Operator, ISRN Mathematical Analysis (2013), Article ID 387178, 5 pages. Google Scholar

[3] D. A. Brannan and J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980). Google Scholar

[4] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, 1983. Google Scholar

[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13. Google Scholar

[6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7–18. Google Scholar

[7] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, PanAm. Math. J. 22 (2012), 15–26. Google Scholar

[8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573. Google Scholar

[9] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie Sklodowska Sect. A. 39 (1985), 77–81. Google Scholar

[10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. Google Scholar

[11] M.M. Shabani and S. Hashemi Sababe, On Some Classes of Spiral-like Functions Defined by the Salagean Operator, Korean J. Math. 28 (2020), 137–147. Google Scholar

[12] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Coefficient Bounds for a Subclass of Harmonic Mappings Convex in one direction, KYUNGPOOK Math. J. 61 (2021), 269-278 Google Scholar

[13] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Some distortion theorems for new subclass of harmonic univalent functions, Honam Mathematical J. 42(4) (2020), 701-717. Google Scholar

[14] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. Google Scholar

[15] D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A. 5 (1984), 559–568. Google Scholar

[16] Q. H. Xu, Y. C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994. Google Scholar

[17] Q. H. Xu, H.G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated cofficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465. Google Scholar