Korean J. Math.  Vol 21, No 3 (2013)  pp.265-270
DOI: https://doi.org/10.11568/kjm.2013.21.3.265

Construction of the first layer of anti-cyclotomic extension

Jangheon Oh


In this paper, using a theorem of Brink for prime decomposition of the anti-cyclotomic extension, we  explicitly construct the first layer of the anti-cyclotomic ${\mathbb Z}_3$-extension of 

imaginary quadratic fields.

Subject classification


Full Text:



D.Brink, Prime decomposition in the anti-cyclotomic extensions, Mathematics of Computation, 76(2007), no.260, 2127-2138. (Google Scholar)

H.Cohen, Advanced Topics in Computational Number Theory, Springer (1999) (Google Scholar)

R.Greenberg, On the Iwasawa invariants of totally real number fields, American Journal of Math., 98(1976), no.1, 263-284. (Google Scholar)

J.Minardi, Iwasawa modules for ${mathbb Z}_{p}^{d}$-extensions of algebraic number fields, (Google Scholar)

Ph.D dissertation, University of Washington, 1986. (Google Scholar)

J.Oh, On the first layer of anti-cyclotomic ${mathbb Z}_{p}$-extension over imaginary quadratic fields, Proc. Japan Acad. Ser.A Math.Sci.,83(2007), no.3, 19-20. (Google Scholar)

J.Oh, A note on the first layers of ${mathbb Z}_{p}$-extensions, Commun. Korean Math. Soc., (Google Scholar)

(2009), no.3, 1-4. (Google Scholar)

J.Oh, Construction of 3-Hilbert class field of certain imaginary quadratic fields, Proc. Japan Aca. Ser.A Math. Sci., 86(2010), no.1, 18-19 . (Google Scholar)

J.Oh, Anti-cyclotomic extension and Hilbert class field, Journal of the Chungcheong Math. Society, 25(2012), no.1, 91-95 . (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr