Korean J. Math.  Vol 21, No 4 (2013)  pp.455-462
DOI: https://doi.org/10.11568/kjm.2013.21.4.455

$t$-splitting sets $S$ of an integral domain $D$ such that $D_S$ is a factorial domain

Gyu Whan Chang

Abstract


Let $D$ be an integral domain, $S$ be a saturated multiplicative subset of $D$ such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over $D$. We show that $S$ is a splitting (resp., almost splitting, $t$-splitting) set in $D$ if and only if every nonzero prime $t$-ideal of $D$ disjoint from $S$ is principal (resp., contains a primary element, is $t$-invertible). We use this result to show that $D \setminus \{0\}$ is a splitting (resp., almost splitting, $t$-splitting) set in $D[\{X_{\alpha}\}]$ if and only if $D$ is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}])$ torsion, UMT-domain).

Subject classification

13A15, 13G05

Sponsor(s)



Full Text:

PDF

References


D.D. Anderson, D.F. Anderson, and M. Zafrullah, Atomic domains in which almost all atoms are prime, Comm. Algebra 20 (1992), 1447–1462. (Google Scholar)

D.D. Anderson, D.F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), 17–37. (Google Scholar)

D.D. Anderson, D.F. Anderson, and M. Zafrullah, The ring D + XDS[X] and t-splitting sets, Commutative Algebra Arab. J. Sci. Eng. Sect. C Theme Issues 26 (1) (2001), 3–16. (Google Scholar)

D.D. Anderson, T. Dumitrescu, and M. Zafrullah, Almost splitting sets and AGCD domains, Comm. Algebra 32 (2004), 147–158. (Google Scholar)

D.F. Anderson and G.W. Chang, Almost splitting sets in integral domains, II, J. Pure Appl. Algebra 208 (2007), 351–359. (Google Scholar)

A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Gr ́ece (N.S.) 29 (1988), 45–59. (Google Scholar)

G.W. Chang, Almost splitting sets in integral domains, J. Pure Appl. Algebra 197 (2005), 279–292. (Google Scholar)

G.W. Chang, Almost splitting sets S of an integral domain D such that DS is a PID, Korean J. Math. 19 (2011), 163–169. (Google Scholar)

G.W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral do- mains, J. Pure Appl. Algebra 187 (2004), 71–86. (Google Scholar)

S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171–184. (Google Scholar)

M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Pru ̈fer integral closure, Comm. Algebra 26 (1998), 1017–1039. (Google Scholar)

R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972. (Google Scholar)

E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969. (Google Scholar)

B.G. Kang, Pru ̈fer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989), 151–170. (Google Scholar)

M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29–62. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr