Korean J. Math.  Vol 22, No 3 (2014)  pp.429-441
DOI: https://doi.org/10.11568/kjm.2014.22.3.429

Hierarchical error estimators for lowest-order mixed finite element methods

Kwang-Yeon Kim

Abstract


In this work we study two a posteriori error estimators of hierarchical type for lowest-order mixed finite element methods.One estimator is computed by solving a global defect problem based on the splitting of the lowest-order Brezzi--Douglas--Marini space, and the other estimator is locally computable by applying the standard localization to the first estimator. We establish the reliability and efficiency of both estimators by comparing them with the standard residual estimator. In addition, it is shown that the error estimator based on the global defect problem is asymptotically exact under suitable conditions.

Keywords


a posteriori error estimation, mixed finite element method, hierarchical error estimator, asymptotic exactness

Subject classification

65N30, 65N15

Sponsor(s)

This study was supported by 2013 Research Grant from Kangwon National Uni- versity (No. C1009911-01-01).

Full Text:

PDF

References


M. Ainsworth, A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007), 189–204. (Google Scholar)

A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385– 395. (Google Scholar)

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications. Springer Series in Computational Mathematics, 44, Springer, Heidelberg, 2013. [4] D. Braess and R. Verfu ̈rth, A posteriori error estimators for the Raviart–Thomas element, SIAM J. Numer. Anal. 33 (1996), 2431–2444. (Google Scholar)

J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math. 68 (1994), 311–324. (Google Scholar)

C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), 465–476. (Google Scholar)

K.-Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), 43–66. (Google Scholar)

K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl. Math. Comp. 218 (2012), 11820–11831. (Google Scholar)

K.-Y. Kim, Asymptotically exact error estimator based on equilibrated fluxes, Int. J. Numer. Anal. Model. (2014), submitted. (Google Scholar)

M. G. Larson and A. Ma ̇lqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), 487–500. (Google Scholar)

C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), 1659–1674. (Google Scholar)

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proc. Conf. on Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer–Verlag, Berlin, 1977, 292–315. (Google Scholar)

M. Vohral ́ık, A posteriori error estimates for lowest-order mixed finite element (Google Scholar)

discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. (Google Scholar)

(2007), 1570–1599. (Google Scholar)

M. Vohral ́ık, , Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), 2001–2032. (Google Scholar)

M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal. 44 (2006), 2082–2106. (Google Scholar)

B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements, Math. Comp. 68 (1999), 1347–1378. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr