Korean J. Math.  Vol 23, No 2 (2015)  pp.249-257
DOI: https://doi.org/10.11568/kjm.2015.23.2.249

Structural and spectral properties of $k$-quasi-$*$-paranormal operators

Fei Zuo, Hongliang Zuo


For a positive integer $k$, an operator $T$ is said to be $k$-quasi-$*$-paranormal if $||T^{k+2}x||||T^{k}x||\geq||T^{*}T^{k}x||^{2}$ for all $x\in H$, which is  a generalization of $*$-paranormal operator. In this paper, we give a necessary and sufficient condition for $T$ to be a $k$-quasi-$*$-paranormal operator.   We also prove that  the  spectrum is continuous  on the  class  of  all $k$-quasi-$*$-paranormal  operators.


k-quasi-∗-paranormal operator, spectral continuity, joint approximate point spectrum.

Subject classification

47B20, 47A10.


This work is supported by the Natural Science Foundation of the Depart- ment of Education of Henan Province (No.14B110008; No.14B110009); the Basic Science and Technological Frontier Project of Henan Province(No.132300410261; No.142300410167).

Full Text:



S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114. (Google Scholar)

J.B. Conway and B.B. Morrel, Operators that are points of spectral continuity, Integr. Equ. Oper. Theory 2 (1979), 174–198. (Google Scholar)

S.V. Djordjevi ́c, Continuity of the essential spectrum in the class of quasihy- ponormal operators, Vesnik Math. 50 (1998), 71–74. (Google Scholar)

B.P. Duggal, I.H. Jeon and I.H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584–587. (Google Scholar)

B.P. Duggal, I.H. Jeon and I.H. Kim, On ∗-paranormal contractions and prop- erties for ∗- class A operators, Linear Algebra Appl. 436 (2012), 954–962. (Google Scholar)

D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153–4174. (Google Scholar)

P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982. (Google Scholar)

J.K. Han and H.Y. Lee, Invertible completions of 2 ∗ 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119–123. (Google Scholar)

Y.M. Han and A.H. Kim, A note on ∗-paranormal operators, Integr. Equ. Oper. Theory 49 (4) (2004), 435–444. (Google Scholar)

S. Mecheri, On a new class of operators and Weyl type theorems, Filomat 27 (2013), 629–636. (Google Scholar)

S. Mecheri, On quasi-∗-paranormal operators, Ann. Funct. Anal. 3 (1) (2012), 86–91. (Google Scholar)

I.S. Hwang and W.Y. Lee, On the continuity of spectra of Toeplitz operators, Arch. Math. 70 (1998), 66–73. (Google Scholar)

I.S. Hwang and W.Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151–157. (Google Scholar)

J.L. Shen and Alatancang, The spectrum properties of quasi-∗-paranormal oper- ators, Chinese Annals of Math.(in Chinese) 34 (6) (2013), 663–670. (Google Scholar)

D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Basel, Boston, 1983. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr