A fixed point approach to the stability of quartic Lie $*$-derivations

Dongseung Kang, Heejeong Koh


We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+\frac{1}{2}a(a^2+1)f(x-y)+(a^4-1)f(y)= \,\,\frac{1}{2}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie $*$-derivation by using a directed method and an alternative fixed point method.


Hyers-Ulam stability; quartic mapping; Lie ∗-derivation; Banach ∗-algebra; fixed point alternative.

Full Text:



T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.

N. Brillou ̈et-Belluot, J. Brzd ̧ek and K. Cieplin ́ski, Fixed point theory and the Ulam stability, Abstract and Applied Analysis 2014, Article ID 829419, 16 pages (2014).

J. Brzd ̧ek, L. Cˇadariu and K. Cieplin ́ski, On some recent developments in Ulam’s type stability, Abstract and Applied Analysis 2012, Article ID 716936, 41 pages (2012).

J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society, 40 no.4 (2003), 565–576.

St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.

A. Foˇsner and M. Foˇsner, Approximate cubic Lie derivations, Abstract and Applied Analysis 2013, Article ID 425784, 5 pages (2013).

D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkh ̈auser, Boston, USA, 1998.

S. Jang and C. Park, Approximate ∗-derivations and approximate quadratic ∗-derivations on C∗-algebra, J. Inequal. Appl. 2011, Articla ID 55 (2011).

S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, USA, 2011.

B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74 (1968), 305–309.

C. Park and A. Bodaghi, On the stability of ∗-derivations on Banach ∗-algebras, Adv. Diff. Equat. 2012 2012:138 (2012).

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 no. 2 (1999)243–252.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.

I.A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).

P.K. Sahoo, A generalized cubic functional equation, Acta Math. Sinica 21 no. 5 (2005), 1159–1166.

S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, USA, 1960.

T.Z. Xu, J.M. Rassias and W.X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malaysian Math. Scien. Soc. 35 no. 3 (2012), 633–649.

S.Y. Yang, A. Bodaghi, K.A.M. Atan, Approximate cubic *-derivations on Banach *-algebra, Abstract and Applied Analysis, 2012, Article ID 684179, 12 pages (2012).

DOI: http://dx.doi.org/10.11568/kjm.2016.24.4.587


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr