Korean J. Math.  Vol 24, No 4 (2016)  pp.627-636
DOI: http://dx.doi.org/10.11568/kjm.2016.24.4.627

On a classification of warped product spaces with gradient Ricci solitons

Sang Deok Lee, Byung Hak Kim, Jin Hyuk Choi


In this paper, we study Ricci solitons, gradient Ricci solitons in the warped product spaces and gradient Yamabe solitons in the Riemannian product spaces. We obtain the necessary and sufficient conditions for the Riemannian product spaces to be Ricci solitons. Moreover we classify the warped product space which admit gradient Ricci solitons under some conditions of the potential function.


Ricci curvature; warped product space; Ricci soliton

Subject classification

53C25, 53B21


Kyung Hee University

Full Text:



A.Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987. (Google Scholar)

H. D. Cao, Geometry of Ricci solitons, Lecture note, Lehigh Univ., 2008. (Google Scholar)

H. D. Cao, Recent progress on Ricci solitons, arXiv:0908.2006v1, 2008. (Google Scholar)

T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties, Nuclear Phys. B478 (1996), 758– 778. (Google Scholar)

M. Eminenti, G. La Nave and C. Mantegazza, Ricci solitons : The equation point of view, Menuscripta Math. 127 (2008) 345–367. (Google Scholar)

M. Fern ́andez-L ́opez and E. Garc ́ıa-R ́ıo, A remark on compact Ricci solitons, Math. Ann. 340 (2008) 893–896. (Google Scholar)

R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988. [8] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993) 301-307. (Google Scholar)

T. Ivey, New examples of complete Ricci solitons, Proc. AMS 122 (1994) 241–245. [10] B. H. Kim, Warped products with critical Riemannian metric , Proc. Japan Academy 71 (1995) 117–118. (Google Scholar)

B. H. Kim, S.D.Lee, J.H.Choi and Y.O.Lee, On warped product spaces with a certain Ricci condition , B. Korean Math. Soc. 50 (2013) (5), 1693–1710. (Google Scholar)

L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Glob. Ana., Geom. 42 (2012), 195–205. (Google Scholar)

G. Perelman, Ricci flow with surgery on three manifolds, arXiv:math. DG/0303109. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr