Korean J. Math.  Vol 25, No 2 (2017)  pp.261-278
DOI: http://dx.doi.org/10.11568/kjm.2017.25.2.261

$([r,s],[t,u])$-interval-valued intuitionistic fuzzy alpha generalized continuous mappings

Chun-Kee Park

Abstract


In this paper, we introduce the concepts of $([r,s], [t,u])$-interval-valued intuitionistic fuzzy alpha generalized closed and open sets in the interval-valued intuitionistic smooth topological space and $([r,s], [t,u])$-interval-valued intuitionistic fuzzy alpha generalized continuous mappings and then investigate some of their properties.

Keywords


([r,s], [t,u])-interval-valued intuitionistic fuzzy alpha generalized closed and open sets, ([r,s], [t,u])-interval-valued intuitionistic fuzzy alpha generalized continuous mapping

Subject classification

54A40, 54A05, 54C08

Sponsor(s)



Full Text:

PDF

References


K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986), 87–96. (Google Scholar)

K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (3) (1989), 343–349. (Google Scholar)

R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986). (Google Scholar)

C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968). 182–190. (Google Scholar)

K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness:fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237–242. (Google Scholar)

D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89. (Google Scholar)

R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79–82. (Google Scholar)

J. K. Jeon, Y. B. Jun and J. H. Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy (Google Scholar)

pre continuity, International Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091–3101. (Google Scholar)

T. K. Mondal and S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323–336. (Google Scholar)

T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1) (1999), 23–38. (Google Scholar)

T. K. Mondal and S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001), 483–494. (Google Scholar)

C. K. Park, Interval-valued intuitionistic gradation of openness, Korean J. Math. 24 (1) (2016), 27–40. (Google Scholar)

A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375. (Google Scholar)

K. Sakthivel, Intuitionistic fuzzy anpha generalized continuous mappings and intuitionistic alpha generalized irresolute mappings, Applied Mathematical Sciences, 4 (37) (2010), 1831–1842. (Google Scholar)

S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8–17. (Google Scholar)

L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. (Google Scholar)

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199–249. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr