Korean J. Math.  Vol 25, No 2 (2017)  pp.215-227
DOI: http://dx.doi.org/10.11568/kjm.2017.25.2.215

Graded integral domains and Nagata rings, II

Gyu Whan Chang

Abstract


Let $D$ be an integral domain with quotient field $K$, $X$ be an indeterminate over $D$, $K[X]$ be the polynomial ring over $K$, and $R= \{f \in K[X] \mid f(0) \in D\}$; so $R$ is a subring of $K[X]$ containing $D[X]$. For $f = a_0 + a_1X + \cdots + a_nX^n \in R$, let $C(f)$ be the ideal of $R$ generated by $a_0, a_1X, \dots , a_nX^n$ and $N(H) = \{g \in R \mid C(g)_v = R\}$. In this paper, we study two rings $R_{N(H)}$ and Kr$(R, v) = \{\frac{f}{g} \mid f, g \in R$, $g \neq 0$, and $C(f) \subseteq C(g)_v\}$. We then use these two rings to give some examples which show that the results of \cite{ac13} are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.


Keywords


graded integral domain, Nagata ring, Kronceker function ring, $D+XK[X]$

Subject classification

13A15, 13G05, 13B25, 13F05

Sponsor(s)



Full Text:

PDF

References


D.D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Paul. 26 (1977), 137–140. (Google Scholar)

D.D. Anderson and D.F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549–569. (Google Scholar)

D.F. Anderson and G.W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), 527-544. (Google Scholar)

D.F. Anderson and G.W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169–184. (Google Scholar)

J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558–563. (Google Scholar)

G.W. Chang, Pru ̈fer ∗-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309–319. (Google Scholar)

L.G. Chouinard II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459–1468. (Google Scholar)

D. Costa, J. Mott, and M. Zafrullah, The construction D+XDS[X], J. Algebra 53 (1978), 423–439. (Google Scholar)

F. Decruenaere and E. Jespers, Pru ̈fer domains and graded rings, J. Algebra 53 (1992), 308–320. (Google Scholar)

M. Fontana and K.A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, in: J.W. Brewer, S. Glaz, W.J. Heinzer, B.M. Olberding (Eds.), Multiplicative Ideal Theory in Commu- tative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, pp. 169–187. (Google Scholar)

R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583–587. (Google Scholar)

R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (Google Scholar)

B.G. Kang, Pru ̈fer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989), 151–170. (Google Scholar)

[16] P. Sahandi, Characterizations of graded Pru ̈fer ∗-multiplication domain, Korean J. Math. 22 (2014), 181–206. (Google Scholar)

[1] D.D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Paul. 26 (1977), 137–140. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr