Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space

Ahmed T. Ali, Fathi Mohamed Hamdoon


In this paper, we study the surfaces foliated by  ellipses in three dimensional Euclidean space $\mathbf{E}^3$. We prove the following results: \textbf{(1)} The surface  foliated by an ellipse have constant Gaussian curvature $K$ if and only if the surface is flat, i.e. $K=0$. \textbf{(2)} The surface foliated by an ellipse is a flat if and only if it is   a part of generalized cylinder or part of generalized cone.


Surfaces in Euclidean space, Gaussian curvature.

Full Text:



Ali A.T., Position vectors of general helices in Euclidean 3-space, Bull. Math. Anal. Appl. 3 (2) (2010), 198–205.

Ali A.T., Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (1) (2012), 1–6.

Delaunay C., Sur la surface de r ́evolution dont la courbure moyenne est constante, J. Math. Pure Appl. 6 (1841), 309–320.

Enneper A., Ueber die cyclischen Fl ̈achen, Nach. K ̋onigl. Ges. d. Wisseensch. G ̋ottingen, Math. Phys. Kl (1866), 243–249.

Enneper A., Die cyclischen Fl ̈achen, Z. Math. Phys. 14 (1869), 393–421.

Lo ́pez R. Cyclic surfaces of constant Gauss curvature, Houston J. Math. 27 (4) (2001), 799–805.

L ́opez R. On linear Weingarten surfaces, Int. J. Math. 19 (2008), 439–448.

Lo ́pez R. Special Weingarten surfaces foliated by circles, Monatsh. Math. 154 (2008), 289–302.

Nitsche J. C. C., Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen Math. Phys. II 1 (1989), 1–5.

Riemann, B. U ̈ber die Fla ̈chen vom kleinsten Inhalt bei gegebener Begrenzung, Abh. K ̈onigl Ges. d. Wissensch. G ̈ottingen, Mathema. C1, 13 (1868), 329–333.



  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: