DOI: https://doi.org/10.11568/kjm.2018.26.2.175
Construction of $\Gamma$-algebra and $\Gamma$-Lie admissible algebras
Abstract
Keywords
Subject classification
17B60.Sponsor(s)
Full Text:
PDFReferences
S. Chakraborty and A.C. Paul, On Jordan isomorphisms of 2-torsion free prime gamma rings, Novi Sad J. Math. 40 (2010), 1–5. (Google Scholar)
W. E. Barnes, On the Γ-rings of Nobusawa, Pasific J. Math. 18 (1966), 411–422. (Google Scholar)
B. Davvaz, R. M. Santilli and T. Vougiouklis, Algebra, Hyperalgebra and Lie-Santilli Theory, J. Gen. Lie Theory Appl. 9 (2) (2015), 231. (Google Scholar)
J.E. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, 9. Springer-Verlag, New York- Berlin, 1978. (Google Scholar)
S. Kyuno, On prime Γ-rings, Pacific J. Math. 75 (1978), 185–190. (Google Scholar)
J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), 65–75. (Google Scholar)
N. Nobusawa, On generalization of the ring theory, Osaka J. Math. 1 (1978), 185–190. (Google Scholar)
D. O ̈zden, M.A. O ̈ztu ̈rk and Y.B. Jun, Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Math. J. 46 (2006), 153–167. (Google Scholar)
A.C. Paul and S. Uddin, On Artinian gamma rings, Aligarh Bull. Math. 28 (2009), 15–19. (Google Scholar)
R.M. Santilli, An introduction to Lie-admissible algebras, Nuovo Cimento Suppl. (1) 6 (1968), 1225–1249. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr