DOI: https://doi.org/10.11568/kjm.2018.26.4.615
Stability of trigintic functional equation in multi-Banach spaces: fixed point approach
Abstract
Keywords
Subject classification
39B62; 47H10; 39B52; 39A11Sponsor(s)
National research Foundation of KoreaFull Text:
PDFReferences
S. Alizadeh, F. Moradlou, Approximate a quadratic mapping in multi-Banach spaces, A fixed point approach, Int. J. Nonlinear Anal. Appl. 7 (2016), 63--75. (Google Scholar)
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64--66. (Google Scholar)
H. Azadi Kenary, Direct method and approximation of the reciprocal difference functional equations in various normed spaces, An. c{S}tiinc{t}. Univ. Al. I. Cuza Iac{s}i. Mat. (N.S.) 63 (2017), 245--263. (Google Scholar)
J. Brzc{e}dk, W. Fechner, M.S. Moslehian, J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278--326. (Google Scholar)
H.G. Dales, M.S. Moslehian, Stability of mappings on multi-normed spaces, Glasgow Math. J. 49 (2007), 321--332. (Google Scholar)
D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222--224. (Google Scholar)
D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkh"{a}user, Basel, 1998. (Google Scholar)
D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567--572. (Google Scholar)
F. Moradlou, Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: A fixed point approach, Commun. Korean Math. Soc. 28 (2013), 319--333. (Google Scholar)
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91--96. (Google Scholar)
J.M. Rassias, R. Murali, M.J. Rassias, A.A. Raj, General solution, stability and non-stability of quattuorvigintic functional equation in multi-Banach spaces, Int. J. Math. Appl. 5 (2017), 181--194. (Google Scholar)
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297--300. (Google Scholar)
S.M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960. (Google Scholar)
L. Wang, B. Liu, R. Bai, Stability of a mixed type functional equation on multi-Banach spaces: A fixed point approach, Fixed Point Theory Appl. 2010, Art. ID 283827 (2010). (Google Scholar)
X. Wang, L. Chang, G. Liu, Orthogonal stability of mixed additive-quadratic Jensen type functional equation in multi-Banach spaces, Adv. Pure Math. 5 (2015), 325--332. (Google Scholar)
Z. Wang, X. Li, Th.M. Rassias, Stability of an additive-cubic-quartic functional equation in multi-Banach spaces, Abstr. Appl. Anal. 2011, Art. ID 536520 (2011). (Google Scholar)
T.Z. Xu, J.M. Rassias, W.X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ functional equation in multi-Banach spaces: A fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), 1032--1047. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr