Korean J. Math.  Vol 27, No 1 (2019)  pp.63-80
DOI: https://doi.org/10.11568/kjm.2019.27.1.63

On Corsini hypergroups and their productional hypergroups

M. Al Tahan, Bijan Davvaz


In this paper, we consider a special hypergroup defined by Corsini and we name it Corsini hypergroup. First, we investigate some of its properties and find a necessary and sufficient condition for the productional hypergroup of Corsini hypergroups to be a Corsini hypergroup. Next, we study its regular relations, fundamental group and complete parts. Finally, we characterize all Corsini hypergroups of orders two and three up to isomorphism.


Corsini hypergroup, Fundamental group.

Subject classification



Full Text:



M. Al- Tahan and B. Davvaz, On a special single-power cyclic hypergroup and its automorphisms, Discrete Mathematics, Algorithms and Applications 7 (4) (2016), 12 pages. (Google Scholar)

M. Al- Tahan and B. Davvaz, On some properties of single power cyclic hypergroups and regular relations, J. Algebra Appl. 16 (11) (2017), 14 pages. (Google Scholar)

R. Ameri, M. Amiri-Bideshki, A.B. Saeid and S. Hoskova-Mayerova, Prime filters of hyperlattices, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 24(2) (2016), 15–26. (Google Scholar)

R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 25(1) (2017), 5–23. (Google Scholar)

P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani Editore, Italy, 1993. (Google Scholar)

P. Corsini, Hypergraphs and hypergroups, Algebra Universalis 35 (4) (1996), 548–555. (Google Scholar)

P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Advances in Mathematics, Kluwer Academic Publisher, 2003. (Google Scholar)

B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. viii+200 pp. (Google Scholar)

B. Davvaz, Semihypergroup Theory, Elsevier, 2016. (Google Scholar)

B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007. (Google Scholar)

M. De Salvo and D. Freni, Cyclic semihypergroups and hypergroups, (Italian) Atti Sem. Mat. Fis. Univ. Modena 30 (1) (1981), 44–59. (Google Scholar)

D. Freni, A note on the core of a hypergroup and the transitive closure β∗ of β, Riv. Mat. Pura Appl., 8 (1991), 153–156. (Google Scholar)

S. Hoskova-Mayerova and A. Maturo, Algebraic hyperstructures and social relations, Ital. J. Pure Appl. Math. 39 (2018), 701–709. (Google Scholar)

M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl. 49 (1970), 155–192. (Google Scholar)

V. Leoreanu, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math. 7 (2000), 69–76. (Google Scholar)

F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves, (1934), 45–49. (Google Scholar)

J. Mittas, Hypergroups canoniques, Math. Balkanica 2 (1972), 165–179. (Google Scholar)

S.Sh. Mousavi, V. Leoreanu-Fotea and M. Jafarpour, Cyclic groups obtained as quotient hypergroups, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 61 (1) (2015), 109–122. (Google Scholar)

T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor. Hadronic Press, Palm Harbor, USA, 1994. (Google Scholar)

T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carolin. Math. Phys. 22 (1) (1981), 3–6. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr