Korean J. Math. Vol. 29 No. 1 (2021) pp.13-24
DOI: https://doi.org/10.11568/kjm.2021.29.1.13

On signless Laplacian spectrum of the zero divisor graphs of the ring $\mathbb{Z}_{n}$

Main Article Content

Shariefuddin Pirzada
Bilal Rather
Rezwan Ul Shaban
S Merajuddin


For a finite commutative ring $ R $ with identity $ 1\neq 0 $, the zero divisor graph $ \Gamma(R) $ is a simple connected graph having vertex set as the set of nonzero zero divisors of $ R $, where two vertices $ x $ and $ y $ are adjacent if and only if $ xy=0$. We find the signless Laplacian spectrum of the zero divisor graphs $ \Gamma(\mathbb{Z}_{n}) $ for various values of $ n$. Also, we find signless Laplacian spectrum of $ \Gamma(\mathbb{Z}_{n}) $ for $ n=p^z , z\geq 2 $, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise $ n $ for which zero divisor graph $ \Gamma(\mathbb{Z}_{n}) $ are signless Laplacian integral.

Article Details

Supporting Agencies



[1] S. Akbari and A. Mohammadian, On zero divisor graphs of a commutative ring, J. Algebra 274 (2004) 847–855. Google Scholar

[2] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. Google Scholar

[3] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA (1969). Google Scholar

[4] I. Beck, Coloring of a commutative rings, J. Algebra 116 (1988) 208–226. Google Scholar

[5] D.M. Cardoso, M.A. De Freitas, E. N. Martins and M Robbiano, Spectra of graphs obtained by a generalization of the join of graph operations, Discrete Math. 313 (2013) 733–741. Google Scholar

[6] S. Chattopadhyay, K. L. Patra and B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring Zn, Linear Algebra Appl. 584 (2020) 267–286. Google Scholar

[7] D. M. Cvetkovi c, P. Rowlison and S. Simi c, An Introduction to Theory of Graph spectra, Spectra of Graphs. Theory and Application, London Math. S. Student Text, 75. Cambridge University Press, Inc. UK, 2010. Google Scholar

[8] H. A. Ganie, B. A. Chat and S. Pirzada, On the signless Laplacian energy of a graph and energy of line graph, Linear Algebra Appl. 544 (2018) 306–324. Google Scholar

[9] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985. Google Scholar

[10] T. Ju and M. Wu, On iteration digraphs and zero divisor graphs of the ring Zn, Czechoslovak Math. J. 64 (139) (2014) 611–628. Google Scholar

[11] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381–389. Google Scholar

[12] R. Merris, Laplacian matrices of graphs, A survey, Linear Algebra Appl. 197 (1994) 143–176. Google Scholar

[13] S. Pirzada and H. A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl. 486 (2015) 454–468. Google Scholar

[14] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad (2012). Google Scholar

[15] S. Pirzada, B. A. Rather, M. Aijaz and T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Zn, Linear Multilinear Algebra (2020) DOI:10.1080/03081087.2020.1838425 Google Scholar

[16] Bilal A. Rather, S. Pirzada, T. A. Naikoo, Y. Shang, On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n, Mathematics 9 (5) (2021), 482. Google Scholar

[17] A. J. Schwenk, Computing the characteristic polynomial of a graph, in Graphs Combinatorics, R. Bary and F. Harary (eds.), Lecture Notes in Mathematics, Vol. 406 (Springer-Verlag, Berlin, 1974 pp. 153–172. Google Scholar

[18] B. F. Wu, Y. Y. Lou and C. X. He, Signless Laplacian and normalized Laplacian on the H-join operation of graphs, Discrete Math. Algorithm. Appl. 06 (2014) [13 pages] DOI:http://dx.doi.org/10.1142/S1793830914500463. Google Scholar

[19] M. Young, Adjacency matrices of zero divisor graphs of integer modulo n, Involve 8 (2015) 753–761. Google Scholar