Enhancing eigenvalue approximation with Bank--Weiser error estimators
Main Article Content
Abstract
In this paper we propose a way of enhancing eigenvalue approximations with the Bank--Weiser error estimators for the
Article Details
References
[1] P. Amore, J. P. Boyd, F. M. Ferna ndez, and B. Ro sler, High or- der eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences, J. Comput. Phys. 312 (2016), 252-271. Google Scholar
[2] I. Babuˇska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), 275–297. Google Scholar
[3] I. Babuˇska and J. E. Osborn, Eigenvalue Problems, in Handbook of Numeri- cal Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet, North-Holland, Amsterdam, 1991, 641–787. Google Scholar
[4] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283–301. Google Scholar
[5] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), 2294– 2312. Google Scholar
[6] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. Google Scholar
[7] R. G. Dura n, C. Padra, and R. Rodr iguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models Methods Appl. Sci. 13 (2003), 1219-1229. Google Scholar
[8] R. G. Dura n and R. Rodr iguez, On the asymptotic exactness of Bank- Weiser's estimator, Numer. Math. 62 (1992), 297-303. Google Scholar
[9] H. Guo, Z. Zhang, and R. Zhao, Superconvergent two-grid methods for el- liptic eigenvalue problems, J. Sci. Comput. 70 (2017), 125–148. Google Scholar
[10] J. Hu, Y. Huang, and Q. Shen, A high accuracy post-processing algorithm for the eigenvalues of elliptic operators, Numer. Math. 52 (2012), 426–445. Google Scholar
[11] Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp. 77 (2008), 1253–1268. Google Scholar
[12] O. Karakashian and F. Pascal, A posteriori error estimates for a discontin- uous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), 2374–2399. Google Scholar
[13] K.-Y. Kim and J.-S. Park, Asymptotic exactness of some Bank–Weiser error estimator for quadratic triangular finite element, Bull. Korean Math. Soc. 57 (2020), 393–406. Google Scholar
[14] M. G. Larson, A posteriori and a priori error analysis for finite element ap- proximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal. 38 (2000), 608–625. Google Scholar
[15] Q. Lin, H. Xie, and J. Xu, Lower bounds of the discretization error for piece- wise polynomials, Math. Comp. 83 (2014), 1–13. Google Scholar
[16] A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math. 106 (2007), 225–253. Google Scholar
[17] A. Naga and Z. Zhang, Function value recovery and its application in eigen- value problems, SIAM J. Numer. Anal. 50 (2012), 272–286. Google Scholar
[18] A. Naga, Z. Zhang, and A. Zhou, Enhancing eigenvalue approximation by gradient recovery, SIAM J. Sci. Comput. 28 (2006), 1289–1300. Google Scholar
[19] M. R. Racheva and A. B. Andreev, Superconvergence postprocessing for eigenvalues, Comp. Methods Appl. Math. 2 (2002), 171–185. Google Scholar
[20] H. Wu and Z. Zhang, Enhancing eigenvalue approximation by gradient recov- ery on adaptive meshes, IMA J. Numer. Anal. 29 (2009), 1008–1022. Google Scholar
[21] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), 1139–1152. Google Scholar
[22] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001), 17–25. Google Scholar