On sequence spaces defined by the domain of tribonacci matrix in $c_0$ and $c$
Main Article Content
Abstract
In this article we introduce tribonacci sequence spaces $c_0(T)$ and $c(T)$ derived by the domain of a newly defined regular tribonacci matrix $T.$ We give some topological properties, inclusion relations, obtain the Schauder basis and determine $\alpha-,$ $\beta-$ and $\gamma-$ duals of the spaces $c_0(T)$ and $c(T).$ We characterize certain matrix classes $(c_0(T), Y)$ and $(c(T),Y),$ where $Y$ is any of the spaces $c_0, c$ or $\ell_{\infty}.$ Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space $c_0(T).$
Article Details
References
[1] M. Alotaibi, M. Mursaleen, B. Alamri, S.A. Mohiuddine, Compact operators on some Fibonacci difference sequence spaces, J. Inequal. Appl. 2015 (2015), 203. Google Scholar
[2] B. Altay, F. Ba ̧sar, On some Euler sequence spaces of nonabsolute type, Ukranian Math. J. 57 (2005), 1-17. Google Scholar
[3] B. Altay, F. Ba ̧sar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30 (4) (2006), 591-608. Google Scholar
[4] B. Altay, F. Ba ̧sar, M. Mursaleen, On the Euler sequence spaces which include the spaces lp and l∞ I, Inf. Sci. 176 (2006), 1450-1462. Google Scholar
[5] F. Ba ̧sar, B. Altay, On the space of sequences of p-bounded variation and related matrix map- pings, Ukrainian Math. J. 55 (1) (2003), 136-147. Google Scholar
[6] M. Ba ̧sarır, E.E. Kara, On compact operators on the Riesz Bm−difference sequence space-II, Iran. J. Sci. Technol. Trans. A Sci. A3 (2012), 371-376. Google Scholar
[7] I. Bruce, A modified Tribonacci sequence, Fibonacci Q. 22 (1984), 244-–246. Google Scholar
[8] M. Catalani, Identities for Tribonacci-related sequences, arXiv 2002, arXiv:math/0209179. Google Scholar
[9] E. Choi, Modular tribonacci Numbers by Matrix Method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 20 (2013), 207–221. Google Scholar
[10] S. Debnath, S. Saha, Some newly defined sequence spaces using regular matrix of Fibonacci numbers, AKU J. Sci. Eng. 14 (2014), 1-3. Google Scholar
[11] S. Demiriz, M. Ilkhan, E.E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal. 11 (2020), 604-616. Google Scholar
[12] S.V. Devbhadra, Some Tribonacci Identities, Math. Today 27 (2011), 1-–9. Google Scholar
[13] S. Ercan, C ̧ .A. Bekta ̧s, Some topological and geometric properties of a new BK-space derived by using regular matrix of Fibonacci numbers, Linear Multilinear Algebra 65 (50) (2017), 909-921. Google Scholar
[14] S. Ercan, C ̧.A. Bekta ̧s, On new convergent difference BK-spaces, J. Comput. Anal. Appl. 23 (5) (2017), 793-801. Google Scholar
[15] S. Ercan, C ̧ .A. Bekta ̧s, On some sequence spaces of non-absolute type, Kragujevac J. Math. 38 (2011), 195-202. Google Scholar
[16] M. Feinberg, Fibonacci–Tribonacci, Fibonacci Q. 1 (1963), 71–74. Google Scholar
[17] F.T. Howard, A Tribonacci Identity, Fibonacci Q. 39 (2001), 352—357. Google Scholar
[18] M. Ilkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c0 and c, Mediterr. J. Math. 17 (2020), 27. Google Scholar
[19] M. Ilkhan, E.E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices 13 (2) (2019), 527-544. Google Scholar
[20] M. Ilkhan, E.E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci. https://doi.org/10.1002/mma.6537. Google Scholar
[21] M. Ilkhan, N. S ̧im ̧sek, E.E. Kara, A new regular infinite matrix defined by Jor- dan totient function and its matrix domain in lp, Math. Methods. Appl. Sci. (2020) https//:doi.org/10.1002/mma.6501. Google Scholar
[22] E.E. Kara, Some topological and geometric properties of new Banach sequence spaces, J. Inequal. Appl. 2013 (2013), 38. Google Scholar
[23] E.E. Kara, M. Basarır, An application of Fibonacci numbers into infinite Toeplitz matrices, Caspian J. Math. Sci. 1 (1) (2012), 43-47. Google Scholar
[24] E.E. Kara, M. Ilkhan, On some Banach sequence spaces derived by a new band matrix, British J. Math. Comput. Sci. 9 (2015), 141-159. Google Scholar
[25] E.E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra, 64 (11) (2016), 2208-2223. Google Scholar
[26] E. Kilic ̧, Tribonacci Sequences with Certain Indices and Their Sums, Ars. Comb. 86 (2008), 13—22. Google Scholar
[27] M. Kiri ̧sci, F. Ba ̧sar, Some new sequence spaces derived the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), 1299-1309. Google Scholar
[28] T. Koshy, Fibonacci and Lucus numbers with applications, Wiley, New York (2001). Google Scholar
[29] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49 (1997), 187-196. Google Scholar
[30] E. Malkowsky, V. RakoVcevi c, On matrix domains of triangles, Appl. Math. Comput. 189 (2007), 1146-1163. Google Scholar
[31] E. Malkowsky, V. RakoVcevi c, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematicki inst. SANU, Belgrade, 9 (17) (2000), 143-234. Google Scholar
[32] M. Mursaleen, F. Ba ̧sar, B. Altay, On the Euler sequence spaces which include the spaces lp and l∞ II, Nonlinear Anal. 65 (3) (2006), 707-717. Google Scholar
[33] M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Non- linear Anal. 73 (2010), 2541-2557. Google Scholar
[34] M. Mursaleen, A.K. Noman, The Hausdorff measure of noncompactness of matrix operator on some BK spaces, Oper. Matrices 5 (3) (2011), 473-486. Google Scholar
[35] M. Mursaleen, A.K. Noman, Compactness of matrix operators on some new difference spaces, Linear Algebra Appl. 436 (1) (2012), 41-52. Google Scholar
[36] M. Mursaleen, A.K. Noman, Hausdorff measure of non-compactness of certain matrix operators on the sequence spaces of generalized means, J. Math. Anal. Appl. 417 (2014), 96-111. Google Scholar
[37] S. Pethe, Some Identities for Tribonacci sequences, Fibonacci Q. 26 (1988), 144—151. Google Scholar
[38] H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl. 2020 (2020), 117. Google Scholar
[39] H. Roopaei, A study on Copson operator and its associated sequence space, J. Inequal. Appl. 2020 (2020), 120. Google Scholar
[40] A. Scott, T. Delaney, V. Hoggatt Jr., The Tribonacci sequence, Fibonacci Q. 15 (1977), 193-–200. Google Scholar
[41] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Q. 20 (1982), 118-–120. Google Scholar
[42] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenra ̈umen eine Ergebnisu ̈bersicht, Math. Z. 154 (1977), 1-16. Google Scholar
[43] C.-S. Wang, On N ̈orlund sequence spaces, Tamkang J. Math. 9 (1978), 269-274. Google Scholar
[44] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, vol. 85. Elsevier, Amsterdam, 1984. Google Scholar
[45] C.C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Q. 10 (1972), 231-–246. Google Scholar
[46] T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo Ser. II, 68 (2019), 459-476. Google Scholar
[47] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70 (3) (2020), 697-706. Google Scholar
[48] T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca 69 (4) (2019), 901-918. Google Scholar
[49] T. Yaying, B. Hazarika, A. Esi, Geometric properties and compact operator on fractional Riesz difference space, Kragujevac J. Math. 47 (4) (2023), 545-566. Google Scholar
[50] T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ. 2020 (2020), 639. Google Scholar
[51] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Ces`aro matrix in lp space and the associated operator ideal, J. Math. Anal. Appl. 493 (1) (2021), 124453. Google Scholar