On $L$-fuzzy semi-prime ideals of a poset and separation theorems
Main Article Content
Abstract
In this paper, the relations between $ L $-fuzzy semi-prime (respectively, $ L $-fuzzy prime) ideals of a poset and $ L $-fuzzy semi-prime (respectively, $ L $-fuzzy prime) ideals of the lattice of all ideals of a poset are established. A result analogous to Separation Theorem is obtained using $ L $-fuzzy semi-prime ideals.
Article Details
References
[1] U. Acar, On L-fuzzy prime submodules, Hacet. J. Math. Stat., 34 (2005) 17–25. Google Scholar
[2] N. Ajmal and K. V. Thomas, Fuzzy lattices, Inform. Sci, 79 (1994) 271-291. Google Scholar
[3] Google Scholar
[4] B. A. Alaba and G. M. Addis, L-Fuzzy ideals in universal algebras, Ann. Fuzzy Math. Inform., 17(1), (2019) 31-39. Google Scholar
[5] Google Scholar
[6] B. A. Alaba and G. M. Addis, L-Fuzzy prime ideals in universal algebras, Advances in Fuzzy Systems, Vol. 2019, Article ID 5925036, 7 pages, 2019. Google Scholar
[7] Google Scholar
[8] B. A. Alaba and G. M. Addis, L-Fuzzy semi-prime ideals in universal algebras, Korean J. Math., 27(2), (2019), 327-340. Google Scholar
[9] Google Scholar
[10] B.A Alaba and T.G. Alemayehu, Closure Fuzzy Ideals of MS-algebras, Ann. Fuzzy Math. Inform., 16 (2018) 247-260. Google Scholar
[11] Google Scholar
[12] B.A Alaba and T.G. Alemayehu, Fuzzy ideals in demipseudocomplemented MS-algebras, Ann. Fuzzy Math. Inform., 18(2019) 123-143. Google Scholar
[13] Google Scholar
[14] B. A. Alaba, M. A. Taye and D. A. Engidaw, L-Fuzzy ideals of a poset, Ann. Fuzzy Math. Inform. 16 (2018), 285–299. Google Scholar
[15] Google Scholar
[16] B. A. Alaba, M. Alamneh and D. Abeje, L-Fuzzy filters of a poset , Int. J. Comp. Sci. Appl. Math. 5(1) (2019), 23–29 Google Scholar
[17] Google Scholar
[18] B. A. Alaba, M. A. Taye and D. A. Engidaw, L-fuzzy prime ideals and maximal L-fuzzy ideals of a poset , Ann. Fuzzy Math. Inform. 18(1) (2019) 1–13. Google Scholar
[19] Google Scholar
[20] B. A. Alaba and D. A. Engidaw, L-Fuzzy semiprime ideals of a poset, Advances in Fuzzy Systems, Vol. 2020, Article ID 1834970, 10 pages, 2020. Google Scholar
[21] Google Scholar
[22] B. A. Alaba and W. Z. Norahun, α− fuzzy ideals and space of prime α-fuzzy ideals in distributive lattices, Ann. Fuzzy Math. Inform. 17 (2019), 147-163. Google Scholar
[23] Google Scholar
[24] B. A. Alaba and W. Z. Norahun, Fuzzy ideals and fuzzy filters of pseudo-complemented semi- lattices, Advances in Fuzzy Systems, vol. 2019, Article ID 4263923, 13 pages, 2019. Google Scholar
[25] Google Scholar
[26] R. Ameri and R. Mahjoob, The spectrum of prime L− submodules, Fuzzy Sets and Systems 159, (2008) 1107–1115. Google Scholar
[27] Google Scholar
[28] Y. Bo and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231–240. Google Scholar
[29] Google Scholar
[30] P. Das, Fuzzy vector spaces under triangular norms, Fuzzy Sets and Systems 25 (1988) 73-85. Google Scholar
[31] Google Scholar
[32] Davey, B. A., Priestley, H. A., Introduction to Lattices and Order , Cambridge University Press, 1990. Google Scholar
[33] Google Scholar
[34] V. N. Dixit, R. Kumar and N. Ajamal, On fuzzy rings, Fuzzy Sets and Systems, 49 (1992) 205-213. Google Scholar
[35] Google Scholar
[36] V. N. Dixit, R. Kumar and N. Ajmal, Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets and Systems, 44(1991) 127–138. Google Scholar
[37] Google Scholar
[38] J. A. Goguen, L-fuzzy sets , J. Math. Anal. Appl. 18 (1967) 145–174. Google Scholar
[39] Google Scholar
[40] G.Gr ̈atzer, General Lattice Theory , Academic Press, New York, 1978. Google Scholar
[41] Google Scholar
[42] R. Hala s, Decomposition of directed sets with zero, Math. Slovaca 45 (1) (1995) 9-17. Google Scholar
[43] Google Scholar
[44] R. Hala s, Annihilators and ideals in ordered sets , Czechoslovak Math. J. 45(120) (1995), 127- 134. Google Scholar
[45] Google Scholar
[46] R. Hala s and J.Rach unek, Polars and prime ideals in ordered sets, Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43--59. Google Scholar
[47] Google Scholar
[48] A. K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977) 135–146. Google Scholar
[49] Google Scholar
[50] V. S. Kharat and K. A. Mokbel, Semi-prime ideals and separation theorem in posets, Order, 25(3) (2008), 195 - 210. Google Scholar
[51] Google Scholar
[52] V. S. Kharat and K. A. Mokbel, Primeness and semiprimeness in posets , Math. Bohem. 134(1) (2009), 19–30. Google Scholar
[53] Google Scholar
[54] B. B. N. Koguep and C. Lele, On fuzzy prime ideals of lattices, SJPAM 3(2008) 1–11. Google Scholar
[55] Google Scholar
[56] Kumar, R., Fuzzy ideals and fuzzy semiprime ideals, Inform. Sci. 66 (1992) 43–52. Google Scholar
[57] Google Scholar
[58] H.V. Kumbhojkar and M.S. Bapat, On semiprime fuzzy ideals, Fuzzy Sets and Systems 60 (1993) 219–223. Google Scholar
[59] Google Scholar
[60] J. Larmerov a and J. Rach unek, Translations of distributive and modular ordered sets , Acta. Univ. Palack. Olomuc. Fac. Rerum.Natur. Math., 91 (1988), 13-23. Google Scholar
[61] Google Scholar
[62] B. B. Makamba, and V. Murali, On prime fuzzy submodules and radicals, J. Fuzzy Math. 8(4) (2000) 831–843. Google Scholar
[63] Google Scholar
[64] Y. Rav, Semiprime ideals in general lattices , J. Pure Appl. Algebra, 56 (1989) 105—118. Google Scholar
[65] Google Scholar
[66] A. Rosenfeld, Fuzzy groups , J. Math. Anal. Appl. 35 (1971) 512–517. Google Scholar
[67] Google Scholar
[68] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936) 37-111. Google Scholar
[69] Google Scholar
[70] U. M. Swamy and D. V. Raju, Fuzzy Ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998) 249-253. Google Scholar
[71] Google Scholar
[72] K.L.N. Swamy and U.M. Swamy, Fuzzy prime ideals of rings , J. Math. Anal. and Appl. 134 (1988) 94–103. Google Scholar
[73] Google Scholar
[74] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. Google Scholar
[75] Google Scholar