Korean J. Math. Vol. 29 No. 2 (2021) pp.305-320
DOI: https://doi.org/10.11568/kjm.2021.29.2.305

On $L$-fuzzy semi-prime ideals of a poset and separation theorems

Main Article Content

Derso Abeje Engidaw
Tilahun Bimerew Alemu

Abstract

In this paper, the relations between $ L $-fuzzy semi-prime (respectively, $ L $-fuzzy prime) ideals of a poset and $ L $-fuzzy semi-prime (respectively, $ L $-fuzzy prime) ideals of the lattice of all ideals of a poset are established. A result analogous to Separation Theorem is obtained using $ L $-fuzzy semi-prime ideals.



Article Details

References

[1] U. Acar, On L-fuzzy prime submodules, Hacet. J. Math. Stat., 34 (2005) 17–25. Google Scholar

[2] N. Ajmal and K. V. Thomas, Fuzzy lattices, Inform. Sci, 79 (1994) 271-291. Google Scholar

[3] Google Scholar

[4] B. A. Alaba and G. M. Addis, L-Fuzzy ideals in universal algebras, Ann. Fuzzy Math. Inform., 17(1), (2019) 31-39. Google Scholar

[5] Google Scholar

[6] B. A. Alaba and G. M. Addis, L-Fuzzy prime ideals in universal algebras, Advances in Fuzzy Systems, Vol. 2019, Article ID 5925036, 7 pages, 2019. Google Scholar

[7] Google Scholar

[8] B. A. Alaba and G. M. Addis, L-Fuzzy semi-prime ideals in universal algebras, Korean J. Math., 27(2), (2019), 327-340. Google Scholar

[9] Google Scholar

[10] B.A Alaba and T.G. Alemayehu, Closure Fuzzy Ideals of MS-algebras, Ann. Fuzzy Math. Inform., 16 (2018) 247-260. Google Scholar

[11] Google Scholar

[12] B.A Alaba and T.G. Alemayehu, Fuzzy ideals in demipseudocomplemented MS-algebras, Ann. Fuzzy Math. Inform., 18(2019) 123-143. Google Scholar

[13] Google Scholar

[14] B. A. Alaba, M. A. Taye and D. A. Engidaw, L-Fuzzy ideals of a poset, Ann. Fuzzy Math. Inform. 16 (2018), 285–299. Google Scholar

[15] Google Scholar

[16] B. A. Alaba, M. Alamneh and D. Abeje, L-Fuzzy filters of a poset , Int. J. Comp. Sci. Appl. Math. 5(1) (2019), 23–29 Google Scholar

[17] Google Scholar

[18] B. A. Alaba, M. A. Taye and D. A. Engidaw, L-fuzzy prime ideals and maximal L-fuzzy ideals of a poset , Ann. Fuzzy Math. Inform. 18(1) (2019) 1–13. Google Scholar

[19] Google Scholar

[20] B. A. Alaba and D. A. Engidaw, L-Fuzzy semiprime ideals of a poset, Advances in Fuzzy Systems, Vol. 2020, Article ID 1834970, 10 pages, 2020. Google Scholar

[21] Google Scholar

[22] B. A. Alaba and W. Z. Norahun, α− fuzzy ideals and space of prime α-fuzzy ideals in distributive lattices, Ann. Fuzzy Math. Inform. 17 (2019), 147-163. Google Scholar

[23] Google Scholar

[24] B. A. Alaba and W. Z. Norahun, Fuzzy ideals and fuzzy filters of pseudo-complemented semi- lattices, Advances in Fuzzy Systems, vol. 2019, Article ID 4263923, 13 pages, 2019. Google Scholar

[25] Google Scholar

[26] R. Ameri and R. Mahjoob, The spectrum of prime L− submodules, Fuzzy Sets and Systems 159, (2008) 1107–1115. Google Scholar

[27] Google Scholar

[28] Y. Bo and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231–240. Google Scholar

[29] Google Scholar

[30] P. Das, Fuzzy vector spaces under triangular norms, Fuzzy Sets and Systems 25 (1988) 73-85. Google Scholar

[31] Google Scholar

[32] Davey, B. A., Priestley, H. A., Introduction to Lattices and Order , Cambridge University Press, 1990. Google Scholar

[33] Google Scholar

[34] V. N. Dixit, R. Kumar and N. Ajamal, On fuzzy rings, Fuzzy Sets and Systems, 49 (1992) 205-213. Google Scholar

[35] Google Scholar

[36] V. N. Dixit, R. Kumar and N. Ajmal, Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets and Systems, 44(1991) 127–138. Google Scholar

[37] Google Scholar

[38] J. A. Goguen, L-fuzzy sets , J. Math. Anal. Appl. 18 (1967) 145–174. Google Scholar

[39] Google Scholar

[40] G.Gr ̈atzer, General Lattice Theory , Academic Press, New York, 1978. Google Scholar

[41] Google Scholar

[42] R. Hala s, Decomposition of directed sets with zero, Math. Slovaca 45 (1) (1995) 9-17. Google Scholar

[43] Google Scholar

[44] R. Hala s, Annihilators and ideals in ordered sets , Czechoslovak Math. J. 45(120) (1995), 127- 134. Google Scholar

[45] Google Scholar

[46] R. Hala s and J.Rach unek, Polars and prime ideals in ordered sets, Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43--59. Google Scholar

[47] Google Scholar

[48] A. K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977) 135–146. Google Scholar

[49] Google Scholar

[50] V. S. Kharat and K. A. Mokbel, Semi-prime ideals and separation theorem in posets, Order, 25(3) (2008), 195 - 210. Google Scholar

[51] Google Scholar

[52] V. S. Kharat and K. A. Mokbel, Primeness and semiprimeness in posets , Math. Bohem. 134(1) (2009), 19–30. Google Scholar

[53] Google Scholar

[54] B. B. N. Koguep and C. Lele, On fuzzy prime ideals of lattices, SJPAM 3(2008) 1–11. Google Scholar

[55] Google Scholar

[56] Kumar, R., Fuzzy ideals and fuzzy semiprime ideals, Inform. Sci. 66 (1992) 43–52. Google Scholar

[57] Google Scholar

[58] H.V. Kumbhojkar and M.S. Bapat, On semiprime fuzzy ideals, Fuzzy Sets and Systems 60 (1993) 219–223. Google Scholar

[59] Google Scholar

[60] J. Larmerov a and J. Rach unek, Translations of distributive and modular ordered sets , Acta. Univ. Palack. Olomuc. Fac. Rerum.Natur. Math., 91 (1988), 13-23. Google Scholar

[61] Google Scholar

[62] B. B. Makamba, and V. Murali, On prime fuzzy submodules and radicals, J. Fuzzy Math. 8(4) (2000) 831–843. Google Scholar

[63] Google Scholar

[64] Y. Rav, Semiprime ideals in general lattices , J. Pure Appl. Algebra, 56 (1989) 105—118. Google Scholar

[65] Google Scholar

[66] A. Rosenfeld, Fuzzy groups , J. Math. Anal. Appl. 35 (1971) 512–517. Google Scholar

[67] Google Scholar

[68] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936) 37-111. Google Scholar

[69] Google Scholar

[70] U. M. Swamy and D. V. Raju, Fuzzy Ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998) 249-253. Google Scholar

[71] Google Scholar

[72] K.L.N. Swamy and U.M. Swamy, Fuzzy prime ideals of rings , J. Math. Anal. and Appl. 134 (1988) 94–103. Google Scholar

[73] Google Scholar

[74] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. Google Scholar

[75] Google Scholar