The inclusion theorems for generalized variable exponent grand Lebesgue spaces
Main Article Content
Abstract
In this paper, we discuss and investigate the existence of the inclusion $ L^{p(.),\theta }\left( \mu \right) \subseteq L^{q(.),\theta }\left( \nu \right) $, where $\mu $ and $\nu $ are two finite measures on $\left( X,\Sigma \right) .$ Moreover, we show that the generalized variable exponent grand Lebesgue space$\ L^{p(.),\theta }\left( \Omega \right) $ has a potential-type approximate identity, where $\Omega $ is a bounded open subset of $ \mathbb{R}^{d}.$
Article Details
References
[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces (2 nd Ed.), (Academic Press) 305, 2003. Google Scholar
[2] G. Anatriello, Iterated grand and small Lebesgue spaces, Collect. Math. 65 (2014), 273–284. Google Scholar
[3] I. Aydin and A.T. Gurkanli, The inclusion Lp(x)(μ) ⊆ Lq(x)(ν), Int. J. Appl. Math. 22 (7) (2009), 1031–1040. Google Scholar
[4] C. Capone, M.R. Formica and R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal. 85 (2013), 125–131. Google Scholar
[5] H. Cartan, Differential Calculus, Hermann, Paris-France, 1971. Google Scholar
[6] D.V. Cruz-Uribe and A. Fiorenza, Approximate identities in variable Lp spaces, Math. Nach. 280 (2007), 256–270. Google Scholar
[7] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis, Springer, New York, 2013. Google Scholar
[8] N. Danelia and V. Kokilashvili, Approximation by trigonometric polynomials in the framework of variable exponent Lebesgue spaces, Georgian Math. J. 23 (1) (2016), 43–53. Google Scholar
[9] L. Diening, Maximal function on generalized Lebesgue spaces Lp(.), Math. Inequal. Appl. 7 (2004), 245–253. Google Scholar
[10] L. Diening, P. Harjulehto, P. H ̈ast ̈o and M. R ̊uˇziˇcka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, 2011. Google Scholar
[11] X. Fan and D. Zhao, On the spaces Lp(x) (Ω) and Wk,p(x) (Ω), J. Math. Anal. Appl. 263 (2) (2001), 424–446. Google Scholar
[12] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2) (2000), 131–148. Google Scholar
[13] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem in weighted grand Lebesgue spaces, Stud. Math. 188 (2) (2008), 123–133. Google Scholar
[14] A.T. Gurkanli, On the inclusion of some Lorentz spaces, J. Math. Kyoto Univ. 44-2 (2004), 441–450. Google Scholar
[15] A.T. Gurkanli, Inclusions and the approximate identities of the generalized grand Lebesgue spaces, Turkish J. Math. 42 (2018), 3195–3203. Google Scholar
[16] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249–258. Google Scholar
[17] T. Iwaniec and C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Rational Mechanics Anal. 119 (1992), 129–143. Google Scholar
[18] V. Kokilashvili and A. Meskhi, Maximal and Calderon-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J. 21 (2014), 447–461. Google Scholar
[19] O. Kov aVcik and J. R akosn ik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (4) (1991), 592-618. Google Scholar
[20] O. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turkish J. Math. 40 (2016), 605–619. Google Scholar
[21] A.G. Miamee, The inclusion Lp(μ) ⊆ Lq(ν), Amer. Math. Monthly 98 (1991), 342–345. Google Scholar
[22] H. Rafeiro and A. Vargas, On the compactness in grand spaces, Georgian Math. J. 22 (1) (2015), 141–152. Google Scholar
[23] J.L. Romero, When Lp(μ) contained in Lq(μ), Amer. Math. Monthly 90 (1983), 203–206. Google Scholar
[24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. 1970. Google Scholar
[25] B. Subramanian, On the inclusion Lp(μ) ⊂ Lq(μ), Amer. Math. Monthly 85 (1978), 479–481. Google Scholar