Korean J. Math. Vol. 29 No. 3 (2021) pp.581-591
DOI: https://doi.org/10.11568/kjm.2021.29.3.581

The inclusion theorems for generalized variable exponent grand Lebesgue spaces

Main Article Content

Ismail Aydin
Cihan Unal

Abstract

In this paper, we discuss and investigate the existence of the inclusion $ L^{p(.),\theta }\left( \mu \right) \subseteq L^{q(.),\theta }\left( \nu \right) $, where $\mu $ and $\nu $ are two finite measures on $\left( X,\Sigma \right) .$ Moreover, we show that the generalized variable exponent grand Lebesgue space$\ L^{p(.),\theta }\left( \Omega \right) $ has a potential-type approximate identity, where $\Omega $ is a bounded open subset of $ \mathbb{R}^{d}.$



Article Details

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces (2 nd Ed.), (Academic Press) 305, 2003. Google Scholar

[2] G. Anatriello, Iterated grand and small Lebesgue spaces, Collect. Math. 65 (2014), 273–284. Google Scholar

[3] I. Aydin and A.T. Gurkanli, The inclusion Lp(x)(μ) ⊆ Lq(x)(ν), Int. J. Appl. Math. 22 (7) (2009), 1031–1040. Google Scholar

[4] C. Capone, M.R. Formica and R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal. 85 (2013), 125–131. Google Scholar

[5] H. Cartan, Differential Calculus, Hermann, Paris-France, 1971. Google Scholar

[6] D.V. Cruz-Uribe and A. Fiorenza, Approximate identities in variable Lp spaces, Math. Nach. 280 (2007), 256–270. Google Scholar

[7] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis, Springer, New York, 2013. Google Scholar

[8] N. Danelia and V. Kokilashvili, Approximation by trigonometric polynomials in the framework of variable exponent Lebesgue spaces, Georgian Math. J. 23 (1) (2016), 43–53. Google Scholar

[9] L. Diening, Maximal function on generalized Lebesgue spaces Lp(.), Math. Inequal. Appl. 7 (2004), 245–253. Google Scholar

[10] L. Diening, P. Harjulehto, P. H ̈ast ̈o and M. R ̊uˇziˇcka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, 2011. Google Scholar

[11] X. Fan and D. Zhao, On the spaces Lp(x) (Ω) and Wk,p(x) (Ω), J. Math. Anal. Appl. 263 (2) (2001), 424–446. Google Scholar

[12] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2) (2000), 131–148. Google Scholar

[13] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem in weighted grand Lebesgue spaces, Stud. Math. 188 (2) (2008), 123–133. Google Scholar

[14] A.T. Gurkanli, On the inclusion of some Lorentz spaces, J. Math. Kyoto Univ. 44-2 (2004), 441–450. Google Scholar

[15] A.T. Gurkanli, Inclusions and the approximate identities of the generalized grand Lebesgue spaces, Turkish J. Math. 42 (2018), 3195–3203. Google Scholar

[16] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249–258. Google Scholar

[17] T. Iwaniec and C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Rational Mechanics Anal. 119 (1992), 129–143. Google Scholar

[18] V. Kokilashvili and A. Meskhi, Maximal and Calderon-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J. 21 (2014), 447–461. Google Scholar

[19] O. Kov aVcik and J. R akosn ik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (4) (1991), 592-618. Google Scholar

[20] O. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turkish J. Math. 40 (2016), 605–619. Google Scholar

[21] A.G. Miamee, The inclusion Lp(μ) ⊆ Lq(ν), Amer. Math. Monthly 98 (1991), 342–345. Google Scholar

[22] H. Rafeiro and A. Vargas, On the compactness in grand spaces, Georgian Math. J. 22 (1) (2015), 141–152. Google Scholar

[23] J.L. Romero, When Lp(μ) contained in Lq(μ), Amer. Math. Monthly 90 (1983), 203–206. Google Scholar

[24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. 1970. Google Scholar

[25] B. Subramanian, On the inclusion Lp(μ) ⊂ Lq(μ), Amer. Math. Monthly 85 (1978), 479–481. Google Scholar