Some results on invarinat submanifolds of Lorentzian para-Kenmotsu manifolds
Main Article Content
Abstract
The purpose of this paper is to study invariant submanifolds of a Lorentzian para Kenmotsu manifold. We obtain the necessary and sufficient conditions for an invariant submanifold of a Lorentzian para Kenmotsu manifold to be totally geodesic. Finally, a non-trivial example is built in order to verify our main results.
Article Details
References
[1] S. K. Hui., V. N. Mishra, T., Pal and Vandana, Some Classes of Invariant Submanifolds of (LCS)n-Manifolds, Italian J. of Pure and Appl. Math. 39 (2018), 359–372. Google Scholar
[2] V. Venkatesha and S. Basavarajappa, Invariant Submanifolds of LP-Sasakian Manifolds, Khayyam J. Math. 6 (1) (2020), 16–26. Google Scholar
[3] S. Sular., C. O ̈zgu ̈r and C. Murathan, Pseudoparallel Anti-Invaraint Submanifolds of Kenmotsu Manifolds, Hacettepe J. of Math. and Stat. 39 (4) (2010), 535–543. Google Scholar
[4] B. C. Montano., L. D. Terlizzi and M.M Tripathi, Invariant Submanifolds of Contact (κ,μ)- Manifolds, Glasgow Math. J. 50 (2008), 499–507. Google Scholar
[5] M. S., Siddesha and C. S Bagewadi, Invariant Submanifolds of (κ, μ)-Contact Manifolds Admitting Guarter Symmetric Metric Connection, International J. of Math. Trends and Tech(IJMTT). 34 (2) (2016), 48–53. Google Scholar
[6] S. Koneyuki and F. L. Williams, Almost paracontact and parahodge Structures on Manifolds, Nagoya Math.J. 90 (1985), 173–187. Google Scholar
[7] S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Globanal Geom. 36 (2009), 37–60. Google Scholar
[8] B. C. Montano., I. K. Erken and C. Murathan, Nullity Conditions in Paracontact Geometry, Differential Geom. Appl. 30 (2010), 79–100. Google Scholar
[9] D. G. Prakasha and K. Mirji, On (κ, μ)-Paracontact Metric Manifolds, Gen. Math. Notes. 25 (2) (2014), 68–77. Google Scholar
[10] S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom. 36 (2009), 68–77. Google Scholar
[11] M. At ̧ceken., U ̈. Yıldırım and S. Dirik, Semiparallel Submanifolds of a Normal Paracontact Metric Manifol, Hacet. J. Math. Stat. 48 (2) (2019), 501–509. Google Scholar
[12] D. E. Blair, T. Koufogiorgos, B. J. Papatoniou, Contact Metric Manifolds Satisfying a Nullity Conditions, Israel J. Math. 91 (1995), 189–214. Google Scholar
[13] Venkatesha and D. M. Naik, Cetain Results on K-Paracontact and Para Sasakian Manifolds, J. Geom. 108 (2017), 939–052. Google Scholar