On $f$-Kenmotsu manifolds admitting Schouten-Van Kampen connection
Main Article Content
Abstract
In the present paper, we study three-dimensional $f$-Kenmotsu manifolds admitting the Schouten-Van Kampen connection. We study the concircular curvature tensor of a three-dimensional $f$-Kenmotsu manifold with respect to the Schouten-Van Kampen connection. Finally, we have cited an example of a three-dimensional $f$-Kenmotsu manifold admitting Schouten-Van Kampen connection which verify our results.
Article Details
References
[1] E. Boeckx, P. Buecken and L. Vanhecke, φ-symmetric contact metric spaces, Glasgow Math. J. 52 (2005), 97–112. Google Scholar
[2] Google Scholar
[3] A. Bejancu, Schouten-van Kampen and Vranceanu connections on Foliated manifolds, Anale S ̧tintifice Ale Universitati." AL. I. CUZA’ IASI, Tomul LII, Mathematica, 2006, 37–60. Google Scholar
[4] Google Scholar
[5] U. C. De and A. Sarkar, φ-Ricci symmetric Sasakian manifolds, Proceedings of the Janjeon Mathematical Society 11 (2008), 47–52. Google Scholar
[6] Google Scholar
[7] G. Ghosh, On Schouten-van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica 36 (2018), 171–182. Google Scholar
[8] Google Scholar
[9] D. Janssens, and L. Vanheck, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1–27. Google Scholar
[10] Google Scholar
[11] W. Ku ̈hnel, Conformal transformatons between Einstein spaces, Conformal geometry (Bonn, 1985/1986), 105-146, Aspects Math. E12, Friedr. Vieweg, Braunschweing, 1988. Google Scholar
[12] Google Scholar
[13] D. L. Kiran Kumar, H. G. Nagaraja and S. H. Naveenkumar, Some curvature properties of Kenmotsu manifolds with Schouten-van Kampen connection, Bull. of the Transilvania Univ. of Brasov., Series III: Math. Informatics, Phys. 2 (2019), 351–364. Google Scholar
[14] Google Scholar
[15] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku math. J. 24 (1972), 93–103. Google Scholar
[16] Google Scholar
[17] A. Kazan and H. B. Karadaˇg, Trans-Sasakian manifolds with Schouten-Van Kampen connection, Ilirias J. of Math. 7 (2018), 1–12. Google Scholar
[18] Google Scholar
[19] H. G. Nagaraja and D. L. Kiran Kumar, Kenmotsu manifolds admitting Schouten-van Kampen connection, Facta Univ. Series: Math. and Informations 34 (2019), 23–34. Google Scholar
[20] Google Scholar
[21] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), 73–87. Google Scholar
[22] Google Scholar
[23] Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectice manifolds, Publ. Math. 39 (1991), 315–323. Google Scholar
[24] Google Scholar
[25] Z. Olszak, The Schouten-Van Kampen affine connection adapted to an almost(para) contact metric structure, Publications Delinstitut Mathematique 94 (2013), 31–42. Google Scholar
[26] Google Scholar
[27] Y. S. Perktas and A. Yildiz, On f-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection, Turkis J. of Math. 45 (2021), 387–409. Google Scholar
[28] Google Scholar
[29] A. F. Solov’ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb. 19 (1978), 12–23 (in Russian). Google Scholar
[30] Google Scholar
[31] K. Yano, Concircular geometry I. concircular transformations, Proc. Inst. Acad. Tokyo 16 (1940), 195–200. Google Scholar
[32] Google Scholar
[33] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Math. Studies 32, Princeton university press, 1953. Google Scholar
[34] Google Scholar
[35] A. Yildiz, U. C. De and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci soliton, Ukrainian J. Math. 65 (2013), 620–628. Google Scholar
[36] A. Yildiz, f -Kenmotsu manifolds with the Schouten-Van Kampen connection, Pub. De L’institut Math. 102 (116) (2017), 93–105. Google Scholar