Reproducing kernel Hilbert space based on special integrable semimartingales and stochastic integration
Main Article Content
Abstract
In this paper, we consider the integral of a stochastic process with respect of a sequence of square integrable semimartingales. By this integrals, we construct a reproducing kernel Hilbert space and study the correspondence between this space with the concepts of arbitrage and viability in mathematical finance.
Article Details
References
[1] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng J. 9 (2018), 2517–2525. Google Scholar
[2] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-–404. Google Scholar
[3] A. Berlinet and C. Tomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Springer Science, Business, Media New York, 2004. Google Scholar
[4] T. Choulli and C. Stricker, Deux application de la d ecomposotion de Galtchouk-Kunita-Watanabe, S eminaire De Probabilit es. 30 (1996), 12--23. Google Scholar
[5] T. Choulli, J. Deng and J. Ma, How non-arbitrage, viability and num eraire portfolio are related., Finance Stoch. 19 (4) (2015), 719-741. Google Scholar
[6] C. Cuchiero, I. Klein and J. Teichmann, A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting., Theory Probab. Appl. 65(3) (2020), 388–404; translation from Teor. Veroyatn. Primen. 65 (3) (2020), 498–520. Google Scholar
[7] C. Cuchiero, I. Klein and J. Teichmann, A new perspective on the fundamental theorem of asset pricing for large financial markets. , Theory Probab. Appl. 60(4) (2016), 561–579; translation from Teor. Veroyatn. Primen. 60 (4) (2015), 660–685 . Google Scholar
[8] F. Delbaen and H. Shirakawa, A note on the no arbitrage condition for international financial markets. , Financ. Eng. Jpn. Mark. 3 (3) (1994), 239–251. Google Scholar
[9] F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing. , Math. Ann. 300, 33 (3) (1994), 463–520. Google Scholar
[10] F. Delbaen and W. Schachermayer, Applications to mathematical finance., Handbook of the geometry of Banach spaces. Volume 1. Amsterdam: Elsevier. 367–391 (2001). Google Scholar
[11] F. Delbaen and W. Schachermayer, Arbitrage possibilities in Bessel processes and their relations to local martingales., Probab. Theory Relat. Fields, 102 (3) (1995), 357–366. Google Scholar
[12] F. Delbaen and W. Schachermayer, A simple counterexample to several problems in the theory of asset pricing. , Math. Finance. 8 (1) (1998), 1–11. Google Scholar
[13] F. Delbaen and W. Schachermayer, The Banach space of workable contingent claims in arbitrage theory. , Ann. Inst. Henri Poincar e, Probab. Stat. 33 (1) (1997), 113-144. Google Scholar
[14] F. Delbaen and W. Schachermayer, The mathematics of arbitrage. , Springer Finance. Springer-Verlag, Berlin, 2006. Google Scholar
[15] C. Dellacherie, Quelques applications du lemme de Borel-Cantelli `a la th eeorie des semimartin-gales, S eminaire de Probabilit es XII, Lecture Notes in Math., 649, 742-745, Springer, 1978. Google Scholar
[16] M. De Donno, P. Guasoni and M. Pratelli, Super-replication and utility maximization in large financial markets. , Stochastic Processes Appl. 115 (12) (2005), 2006–2022. Google Scholar
[17] S. Hashemi Sababe and A. Ebadian, Some properties of reproducing Kernel Banach and Hilbert spaces, Sahand commun. math. anal., 12 (1) (2018), 167–177. Google Scholar
[18] S. Hashemi Sababe, A. Ebadian and Sh. Najafzadeh, On reproducing property and 2-cocycles, Tamkang J. Math., 49 (2) (2018), 143–153. Google Scholar
[19] S. Hashemi Sababe, 0 On 2-inner product and reproducing property, Korean J. Math., 28 (4) (2020), 973–984. Google Scholar
[20] J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag Berlin Heidelberg, (1987) Google Scholar
[21] Y.M. Kabanov, On the FTAP of Kreps-Delbaen-Schachermayer.,In Statistics and control of stochastic processes (Moscow,1995/1996), pages 191–203. World Sci. Publ., River Edge, NJ, 1997. Google Scholar
[22] C. Kardaras, Stochastic integration with respect to arbitrary collections of continuous semi-martingales and applications to Mathematical Finance, arXiv:1908.03946v2 [math.PR], 2019. Google Scholar
[23] H. Kunita and Sh. Watanabe On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245. https://projecteuclid.org/euclid.nmj/1118796812 Google Scholar
[24] R. Mikulevicius and B.L. Rozovskii, Normalized stochastic integrals in topological vector spaces, S eminaire de Probabilit es XXXII, Lecture Notes in Math., Springer, 137-165, Springer, 1998. Google Scholar
[25] R. Mikulevicius and B.L. Rozovskii, Martingale problems for stochastic PDE’s, Amer. Math. Soc., 64 (1999), 243–326. Google Scholar
[26] J. M emin, Espaces de semi martingales et changement de probabilit e, Z Wahrscheinlichkeit 52 (1980), 9-39. Google Scholar
[27] M. Schuld and N. Killoran, Quantum Machine Learning in Feature Hilbert Spaces, Phys Rev Lett, 122 (2018), 040504(1)-040504(6). Google Scholar
[28] S. Vahdati, M. Fardi and M. Ghasemi, Option pricing using a computational method based on reproducing kernel, J Comput Appl Math, 328 (2018), 252–266. Google Scholar