Weakly convergent sequences in fuzzy normed spaces
Main Article Content
Abstract
In this paper, we introduce the definition of weakly convergent sequence in fuzzy normed spaces. We investigate relationship between convergent sequence and weakly convergent sequence in fuzzy normed spaces. We also study the dual spaces of a standard fuzzy normed space and $01$-fuzzy normed space.
Article Details
References
[1] C. Alegre, S. Romaguera, The Hahn-Banach Extension Theorem for Fuzzy Normed Spaces Revisited, Abstr. Appl. Anal. 2014 (2014), Art. ID 151472. Google Scholar
[2] T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), 687–705. Google Scholar
[3] T. Bag, S. K. Samanta, Fuzzy bounded linear operators in felbin’s type fuzzy normed linear spaces, Fuzzy Sets Syst. 151 (2005), 513–547. Google Scholar
[4] K. Cho, C. Lee, On convergences in fuzzy normed spaces, Far East J. Math. Sci. 109 (2018), 129-141. Google Scholar
[5] K. Cho, C. Lee, Some results on convergences in fuzzy metric spaces and fuzzy normed spaces, Commun. Korean Math. Soc. 35 (2020), 185-199. Google Scholar
[6] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst. 48 (1992), 239-248. Google Scholar
[7] R. Saadati, S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Comput. 17 (2005), 475-484. Google Scholar
[8] J. Simon, Banach, Fr echet, Hilbert and Neumann Spaces, John Wiley & Sons, Hoboken, 2017. Google Scholar