Korean J. Math. Vol. 29 No. 2 (2021) pp.387-393
DOI: https://doi.org/10.11568/kjm.2021.29.2.387

Symmetric bi-derivations of subtraction algebras

Main Article Content

Kyung Ho Kim

Abstract

In this paper, we introduce the notion of symmetric bi-derivations on subtraction algebra and investigated some related properties. We prove that a map $D : X\times X\to X$ is a symmetric bi-derivation on $ X$ if and only if $D$ is a symmetric map and it satisfies $D(x-y, z)=D(x, z)-y$ for all $x, y, z\in X.$


Article Details

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969. Google Scholar

[2] S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2) (2013), 165–171. Google Scholar

[3] K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2) (2010), 127–132. Google Scholar

[4] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153–2169. Google Scholar

[5] Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 41 (2) (2012), 157–168 Google Scholar

[6] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445–447. Google Scholar