Korean J. Math. Vol. 29 No. 4 (2021) pp.679-685
DOI: https://doi.org/10.11568/kjm.2021.29.4.679

A new algorithm for variational inclusion problem

Main Article Content

Aadil Hussain Dar
Md. Kalimuddin Ahmad
Dr Salahuddin

Abstract

The target of this article is to modify the algorithm given by Fang and Huang [6]. The rate of convergence of our algorithm is faster than that of Fang and Huang [6]. A numerical example is given to justify our statement.



Article Details

References

[1] S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201 (1996) 609–630. Google Scholar

[2] R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13 (2000) 23–26. Google Scholar

[3] R. Ahmad, Q. H. Ansari and S. S. Irfan, Generalized variational inclusions and generalized resolvent equations in Banach spaces, Comput. Math. Appl., 29 (11-12) (2005) 1825–1835. Google Scholar

[4] H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing, Amsterdam, The Netherlands, 1973. Google Scholar

[5] X. P. Ding, Perturbed proximal point algorithms for generalized quasi-variational inclusions, J. Math. Anal. Appl., 210 (1997) 88–101. Google Scholar

[6] Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 145 (2003) 795–803. Google Scholar

[7] Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett., 17 (2004) 647–653. Google Scholar

[8] F. Giannessi and A. Maugeri, Variational Inequalities and Nework Equilibriun Problems, Plenum, New York, 1995. Google Scholar

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984. Google Scholar

[10] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994) 706–712. Google Scholar

[11] N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl., 35 (10) (1998) 9–14. Google Scholar

[12] M. A. Noor, Some recent advances in variational inequalities (I), New Zealand J. Math., 26 (1997) 53–80. Google Scholar

[13] M. A. Noor, Some recent advances in variational inequalities (II), New Zealand J. Math., 26 (1997) 229–255. Google Scholar

[14] S. M. Robinson, Generalized equations and their solutions, part (I): basic theory, Math. Program. Stud., 10 (1979) 128–141. Google Scholar

[15] R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898. Google Scholar