Radau quadrature for a rational almost quasi-Hermite-Fejer-type interpolation
Main Article Content
Abstract
Article Details
References
[1] P. Borwein and T. Erd elyi, Polynomials and Polynomial Inequalities, Graduate Texts in Math- ematics 161, Springer-Verlag, New York (1995). Google Scholar
[2] S. Kumar, N. Mathur, V. N. Mishra and P. Mathur, Radau Quadrature for an Almost Quasi- Hermite-Fej er-type interpolation in Rational Spaces, Int. J. Anal. Appl. 19 (2) (2021), 180-192. Google Scholar
[3] A. L. Lukashov, Inequalities for the derivatives of rational functions on several intervals, Izv. Math. 68 (3) (2004), 543–565. Google Scholar
[4] A. A. Markov, Izbrannye trudy, Teoriya cisel. Teoriya veroyatnostei, Izdat. Akad. Nauk SSSR, Leningrad (1951). Google Scholar
[5] G. Min, Lobatto-type quadrature formula in rational spaces, J. Comput. Appl. Math. 94 (1) (1998), 1–12. Google Scholar
[6] Y. Rouba, K. Smatrytski and Y. Dirvuk, Rational quasi-Hermite-FejÀer-type interpolation and Lobatto-type quadrature formula with Chebyshev-Markov nodes, Jaen J. Approx. 7 (2) (2015), 291–308. Google Scholar
[7] E. A. Rovba, Interpolation rational operators of Fej er and de la Valle-Poussin type, Mat. Zametki. 53 (2) (1993), 114-121 (in Russian, English translation: Math. Notes. 53 (1993), 195- 200). Google Scholar
[8] E. A. Rouba, Interpoljacija i rjady Furie v ratsionalnoj approksimatsii, GrSU, Grodno. Google Scholar
[9] Y. A. Rouba and K. A. Smatrytski, Rational interpolation in the zeros of Chebyshev-Markov sine-fractions, Dokl. Nats. Akad. Nauk Belarusi 52 (5) (2008), 11–15(in Russian). Google Scholar
[10] V. N. Rusak, Interpolation by rational functions with fixed poles, Dokl. Akad. Nauk BSSR 6 (1962), 548–550 (in Russian). Google Scholar
[11] V. N. Rusak, On approximations by rational fractions, Dokl. Akad. Nauk BSSR 8 (1964), 432– 435 (in Russian). Google Scholar
[12] A. H. Turecki, Teorija interpolirovanija v zadachakh, Izdat “Vyssh. Skola" , Minsk (1968). Google Scholar
[13] J. Van Deun, Electrostatics and ghost poles in near best fixed pole rational interpolation, Electron. Trans. Numer. Anal. 26 (2007), 439–452. Google Scholar