$L_P-$type inequalities for derivative of a polynomial
Main Article Content
Abstract
For the polynomial $P(z)$ of degree $n$ and having all its zeros in $|z| \leq k$, $k \geq 1$, Jain [6] proved that
$$ \begin{align*} \max_{|z|=1} |P^{\prime}(z)|\geq n \frac{|c_0| + |c_n|k^{n+1}}{|c_0|(1+k^{n+1}) + |c_n| ( k^{n+1} + k^{2n})} \max_{|z|=1}|P(z)| . \end{align*}$$
In this paper, we extend above inequality to its integral analogous and there by obtain more results which extended the already proved results to integral analogous.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. 55 (1988), 232–238. Google Scholar
[2] S. Bernstein, Sur Àe ordre de la meilleure approximation des functions continues par des poly- nomes de degrÀe donnÀe, Mem. Acad. R. Belg., 4 (1912), 1–103. Google Scholar
[3] N. K. Govil, On the derivative of a polynomial , Proc. Amer. Math. Soc., 41 (1973), 543–546. Google Scholar
[4] N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1991), 29–35. Google Scholar
[5] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 319–330. Google Scholar
[6] V. K. Jain,On the derivative of a polynomial, Bull. Math. Soc. Sci. Math. Roumanie Tome, 59 (2016), 339–347. Google Scholar
[7] M.A. Malik, On the derivative of a polynomial; j. Lond. Math. Soc. 1 (1969), 57–60. Google Scholar
[8] M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281–284. Google Scholar
[9] G. V. Milovanovi c, D. S. Mitrinovi c and T. M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros , World Scientific, Singapore, (1994). Google Scholar
[10] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, (2002). Google Scholar
[11] P. Tura n, U ber die Ableitung von Polynomen Compos. Math. 7 , 89-95(1939) Google Scholar
[12] E. C. Titchmarsh, The theory of functions, The English Book Society and Oxford University Press, London. 1962. Google Scholar