Superstability of the -radical trigonometric functional equation
Main Article Content
Abstract
In this paper, we solve and investigate the superstability of the
which is related to the trigonometric(Kim's type) functional equations, where
Article Details
References
[1] J. d’Alembert, Memoire sur les Principes de Mecanique, Hist. Acad. Sci. Paris, (1769), 278–286 Google Scholar
[2] M. Almahalebi, R. El Ghali, S. Kabbaj, C. Park, Superstability of p-radical functional equations related to Wilson–Kannappan–Kim functional equations, Results Math. 76 (2021), Paper No. 97. Google Scholar
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. Google Scholar
[4] R. Badora, On the stability of cosine functional equation, Rocznik Naukowo-Dydak. Prace Mat. 15 (1998), 1–14. Google Scholar
[5] R. Badora, R. Ger, On some trigonometric functional inequalities, in Functional Equations-Results and Advances, 2002, pp. 3–15. Google Scholar
[6] J. A. Baker, The stability of the cosine equation, Proc. Am. Math. Soc. 80 (1980), 411–416. Google Scholar
[7] J. A. Baker, J. Lawrence, F. Zorzitto, The stability of the equation f (x + y) = f (x)f (y), Proc. Am. Math. Soc. 74 (1979), 242–246. Google Scholar
[8] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16, (1949), 385–397. Google Scholar
[9] P. W. Cholewa, The stability of the sine equation, Proc. Am. Math. Soc. 88 (1983), 631–634. Google Scholar
[10] Iz. EL-Fassi, S. Kabbaj, G. H. Kim, Superstability of a Pexider-type trigonometric functional equation in normed algebras, Inter. J. Math. Anal. 9 (58), (2015), 2839–2848. Google Scholar
[11] M. Eshaghi Gordji, M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation f(x2 + y2) = f(x) + f(y), Nonlinear Funct. Anal. Appl. 14, (2009), 413-420. Google Scholar
[12] P. Gˇavruta, On the stability of some functional equations, Th. M. Rassias and J. Tabor (eds.), Stability of mappings of Hyers-Ulam type, Hadronic Press, New York, 1994, pp. 93–98. Google Scholar
[13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224. Google Scholar
[14] Pl. Kannappan, The functional equation f(xy) + f(xy−1) = 2f(x)f(y) for groups, Proc. Am. Math. Soc. 19 (1968), 69–74. Google Scholar
[15] Pl. Kannappan, Functional Equations and Inequailitis with Applications, Springer, New York, 2009. Google Scholar
[16] Pl. Kannappan, G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math. 1 (2001), 49–58. Google Scholar
[17] G. H. Kim, The stability of the d’Alembert and Jensen type functional equations, J. Math. Anal. Appl. 325 (2007), 237–248. Google Scholar
[18] G. H. Kim, On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput. 203 (2008), 99–105. Google Scholar
[19] G. H. Kim, Superstability of some Pexider-type functional equation, J. Inequal. Appl. 2010 (2010), Article ID 985348. doi:10.1155/2010/985348. Google Scholar
[20] G. H. Kim, Superstability of a generalized trigonometric functional equation, Nonlinear Funct. Anal. Appl. 24 (2019), 239–251. Google Scholar
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. Google Scholar
[22] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964. Google Scholar