Korean J. Math. Vol. 30 No. 3 (2022) pp.467-474
DOI: https://doi.org/10.11568/kjm.2022.30.3.467

Boundedness of Cb,c operators on Bloch spaces

Main Article Content

Pankaj Kumar Nath
Sunanda Naik

Abstract

In this article, we consider the integral operator Cb,c, which is
defined as follows:
Cb,c(f)(z)=0zf(w)F(1,1;c;w)w(1w)b+1cdw,
where denotes the Hadamard/ convolution product of power series, F(a,b;c;z) is the classical
hypergeometric function with b,c>0,b+1>c and f(0)=0.
We investigate the boundedness of the Cb,c operators on Bloch spaces.



Article Details

Supporting Agencies

NIL

References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, (1999). Google Scholar

[2] M. R. Agrawal, P. G. Howlett, S. K. Lucas, S. Naik and S. Ponnusamy,Boundedness of generalized Cesaro averaging operators on certain function spaces, J. Comput. Appl. Math. 180 (2005), 333–344 Google Scholar

[3] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functions and function spaces, J. Comput. Appl. Math. 139 (2) (2002), 299–322. Google Scholar

[4] H. Deng, S. Ponnusamy, and J. Qiao, Extreme points and support points of families of harmonic Bloch mappings, Potential Analysis 55 (2021), 619–638. Google Scholar

[5] E. Diamantopoulos and A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), 191–198. Google Scholar

[6] H. Hidetaka, Bloch-type spaces and extended Ces ́aro operators in the unit ball of a complex Banach space, Preprint (https://arxiv.org/abs/1710.11347). Google Scholar

[7] S. Kumar and S. K. Sahoo, Properties of β-Ces ́aro operators on α-Bloch Space, Rocky Mountain J. Math. 50 (1) (2020), 1723–1743. Google Scholar

[8] G. Liu and S. Ponnusamy, On Harmonic ν-Bloch and ν-Bloch-type mappings, Results in Mathematics 73(3) (2018), Art 90, 21 pages. Google Scholar

[9] J. Miao, The Ces ́aro operator is bounded on Hp for 0 < p < 1,Proc. Amer. Math. Soc. 116 (4) (1992), 1077–1079. Google Scholar

[10] M. Huang, S. Ponnusamy, and J. Qiao, Extreme points and support points of harmonic alpha-Bloch Mappings, Rocky Mountain J. Math. 50 (4) (2020), 1323–1354. Google Scholar

[11] S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), 278–301. Google Scholar

[12] A. Siskakis, Semigroups of composition operators in Bergman spaces, Bull. Austral.Math. Soc. 35 (1987), 397–406. Google Scholar

[13] A. G. Siskakis, The Cesa ́ro operator is bounded on H1, Proc. Amer. Math. Soc. 110 (4) (1990), 461–462. Google Scholar

[14] S. Stevi ́c, Boundedness and Compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. Math. Zh. 48 (3) (2007), 694–706. Google Scholar

[15] J. Xiao, Cesa ́ro type operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68 (1997), 398–406. Google Scholar

[16] K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007). Google Scholar

[17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, USA, (2005). Google Scholar