Generalized crossed modules over generalized group-groupoids
Main Article Content
Abstract
In this paper we define generalized double group-groupoids and crossed modules over generalized group-groupoids. Also we prove that these algebraic structures are categorically equivalent.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] S.A Ahmadi, Generalized topological groups and genetic recombination, J Dyn Syst Geom Theor. 11 (2013), 51–58. https://doi.org/10.1080/1726037X.2013.823805 Google Scholar
[2] H. F. Akız, N. Alemdar, O. Mucuk and T. S ̧ahan, Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. Journal. 20 (2) (2013), 223– 238. https://doi.org/10.1515/gmj-2013-0021 Google Scholar
[3] J.T.Akinmoyewa, A study of some properties of generalized groups, Octogon Mathematical Magazine. 17 (2009), 125–134. https://www.uni-miskolc.hu/~matsefi/Octogon/volumes/volume2/article2_8.pdf Google Scholar
[4] J.C. Baez, A.D. Lauda, Higher-dimensional algebra V: 2-groups, Theory Appl. Categ. 12 (2004), 423–491. https://doi.org/10.48550/arXiv.math/0307200 Google Scholar
[5] R. Brown, Topology and groupoids, Booksurge PLC, (2006). https://groupoids.org.uk/pdffiles/topgrpds-e.pdf Google Scholar
[6] R. Brown, Higher dimensional group theory, Low Dimensional Topology, London Math. Soc. Lect. Notes, Cambridge Univ. Press, 48, (1982) 215–238. https://doi.org/10.1017/CBO9780511758935.012 Google Scholar
[7] R. Brown, O. Mucuk, Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc. 115 (1994), 97–110. https://doi.org/10.1017/S0305004100071942 Google Scholar
[8] R. Brown, C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79 (1976), 296–302. https://doi.org/10.1016/1385-7258(76)90068-8 Google Scholar
[9] R. Brown, C.B. Spencer, Double groupoids and crossed modules, Cah. Topol. G ́eom. Diff ́er. Categ. 17 (1976), 343-362. http://www.numdam.org/item?id=CTGDC_1976__17_4_343_0 Google Scholar
[10] R. Brown, P. J. Higgins, R. Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society, Tracts in Mathematics. 15 (2011). https://doi.org/10.4171/083 Google Scholar
[11] R. Brown, J. Huebschmann, Identities among relations, in Low Dimentional Topology, London Math. Soc. Lect. Notes, Cambridge Univ. Press. 48 (1982), 153–202. https://doi.org/10.1017/CBO9780511758935.010 Google Scholar
[12] C. Ehresmann, Cat ́egories doubles et cat ́egories structur ́es, C. R. Acad. Sci. Paris. 256 (1963) 1198–1201. Google Scholar
[13] M.R. Farhangdoost, T. Nasirzade, Geometrical categories of generalized Lie groups and Lie group-groupoids, Iran J. Sci Technol A. (2013), 69-73. https://www.researchgate.net/publication/267660211_Geometrical_Categories_of_Generalized_Lie_Groups_and_Lie_Group- Groupoids Google Scholar
[14] M. H. Gu ̈rsoy, H. Aslan, I ̇, I ̇ ̧cen, Generalized crossed modules and group-groupoids, Turkish Journal of Mathematics. 41 (2017), 1535–1551. https://doi.org/10.3906/mat-1602-63 Google Scholar
[15] J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Hel-vetici. 55 (1980), 302–314. https://doi.org/10.1007/BF02566688 Google Scholar
[16] J. L. Loday, Cohomologie et groupes de Steinberg relatifs, J. Algebra. 54 (1978) 178–202. https://doi.org/10.1016/0021-8693(78)90025-X Google Scholar
[17] A. S. T. Lue, Cohomology of groups relative to a variety, J. Algebra. 69 (1981), 155–174. https://doi.org/10.1016/0021-8693(81)90136-8 Google Scholar
[18] M. Mehrabi, M.R. Molaei, A. Olomi, Generalized subgroups and homomorphisms, Arab J Math Sci. 6 (2000) 1 https://ajms.ksu.edu.sa/sites/ajms.ksu.edu.sa/files/imce_images/1._m._mehrabi_m._r._molaei_and_a._oloomi.pdf Google Scholar
[19] M.R. Molaei, Generalized groups, Bul Inst Politeh Iasi Sect I Mat Mec Teor Fiz. 45 (1999), 21–24. Google Scholar
[20] M.R. Molaei, Generalized action, In: Mladenov IM, Naber GL, editors, International Conference on Geometry, Integrability and Quantization, September (1999) 1-10 ;Varna, Bulgaria. Sofia: Coral Press. (1999), 175–179. https://doi.org/10.7546/giq-1-2000-175-179 Google Scholar
[21] O. Mucuk, H.F. Akız, Monodromy groupoid of an internal groupoid in topological groups with operations, Filomat. 29 (10) (2015), 2355–2366. https://doi.org/10.2298/FIL1510355M Google Scholar
[22] O. Mucuk , T. S ̧ahan, N. Alemdar, Normality and Quotients in Crossed Modules and Group-groupoids, Applied Categorical Structures. 23 (2015), no.3 415–428. https://doi.org/10.1007/s10485-013-9335-6 Google Scholar
[23] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30 (1987) 373–381. https://doi.org/10.1017/S0013091500026766 Google Scholar
[24] S. Temel, T. S ̧ahan, O. Mucuk, Crossed Modules, Double Group-Grouoids and Crossed Squares, Filomat. 34 (6) (2020), 1755–1769. https://doi.org/10.2298/FIL2006755T Google Scholar
[25] J. H. C. Whitehead, Note on a previous paper entitled, On adding relations to homotopy group, Ann. of Math. 47 (2) (1946), 806–810 https://doi.org/10.2307/1969237 Google Scholar
[26] J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949), 453–496. Google Scholar