Estimates for analytic functions associated with Schwarz lemma on the boundary
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] T. Akyel and B. N. O ̈rnek, Some Remarks on Schwarz Lemma at the Boundary, Filomat, 31 (13) (2017), 4139–4151. Google Scholar
[2] T. A. Azero ̆glu and B. N. O ̈rnek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013) 571–577. Google Scholar
[3] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010) 770–785. Google Scholar
[4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004) 3623–3629. Google Scholar
[5] G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. Google Scholar
[6] M. Mateljevi ́c, Schwarz Lemma, and Distortion for Harmonic Functions Via Length and Area, Potential Analysis, 53 (2020), 1165–1190. Google Scholar
[7] M. Mateljevi ́c, N. Mutavdˇz ́c and B. N. O ̈rnek, Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma, Appl. Anal. and Discrete Math.16 (2022) 111–131. Google Scholar
[8] P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018) 93–97. Google Scholar
[9] P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018) 1140–1144. Google Scholar
[10] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513–3517. Google Scholar
[11] B. N. O ̈rnek and T. Akyel, On bounds for the derivative of analytic functions at the boundary, The Korean Journal of Mathematics , 29 (4) (2021), 785–800. Google Scholar
[12] B. N. O ̈rnek and T. Du ̈zenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (9) (2018) 1149– 1153. Google Scholar
[13] B. N. O ̈rnek and T. Du ̈zenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13 (2) (2019), 145–152. Google Scholar
[14] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. Google Scholar
[15] H. Unkelbach, U ̈ber die Randverzerrung bei konformer Abbildung, Math. Z., 43 (1938), 739–742. Google Scholar