Korean J. Math. Vol. 30 No. 4 (2022) pp.629-642
DOI: https://doi.org/10.11568/kjm.2022.30.4.629

Coefficient estimates for generalized Libera type bi-close-to-convex functions

Main Article Content

Serap Bulut

Abstract

In a recent paper, Sakar and Güney introduced a new class of bi-close-to-convex functions and determined the estimates for the general Taylor-Maclaurin coefficients of functions therein. The main purpose of this note is to give a generalization of this class. Also we point out the proof by Sakar and Güney is incorrect and present a correct proof.



Article Details

References

[1] O. Altınta ̧s, H. Irmak, S. Owa and H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20 (2007), 1218–1222. Google Scholar

[2] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179–222. Google Scholar

[3] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343–367. Google Scholar

[4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe ̧s- Bolyai Math. 31 (2) (1986), 70–77. Google Scholar

[5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R., Math., Acad. Sci. Paris 352 (6) (2014), 479–484. Google Scholar

[6] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (6) (2016), 1567–1575. Google Scholar

[7] S. Bulut, A new comprehensive subclass of analytic bi-close-to-convex functions, Turk. J. Math. 43 (3) (2019), 1414–1424. Google Scholar

[8] S. Bulut, Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca 71 (6) (2021), 1401–1410. Google Scholar

[9] S. Bulut, Coefficient estimates for functions associated with vertical strip domain, Commun. Korean Math. Soc. 37 (2) (2022), 537–549. Google Scholar

[10] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983. Google Scholar

[11] G. Faber, U ̈ber polynomische Entwickelungen, Math. Ann. 57 (3) (1903) 389–408. Google Scholar

[12] H.O ̈. Gu ̈ney, G. Murugusundaramoorthy, and H.M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Result. Math. 74 (3) (2019), Paper No. 93. Google Scholar

[13] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 17–20. Google Scholar

[14] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc. 41 (5) (2015), 1103–1119. Google Scholar