Korean J. Math. Vol. 30 No. 4 (2022) pp.679-686
DOI: https://doi.org/10.11568/kjm.2022.30.4.679

The meaning of the concept of lacunary statistical convergence in G-metric spaces

Main Article Content

Şerife Selcan Küçük
Hafize Gümüş

Abstract

In this study, the concept of lacunary statistical convergence is studied in G-metric spaces. The G-metric function is based on the concept of distance between three points. Considering this new concept of distance, we examined the relationships between GS, GSθ,Gσ1 and GNθ sequence spaces.



Article Details

References

[1] R. Abazari, Statistical convergence in g-metric spaces, Filomat 36 (5) (2022), 1461–1468. Google Scholar

[2] T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topol. Appl. 160 (12) (2013), 1486–1493. Google Scholar

[3] J. Connor, The statistical and strong p-Ces ́aro convergence of sequences, Analysis 8 (1988), 47–63. Google Scholar

[4] B. H. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329–336. Google Scholar

[5] P. Erdos and G. Tenenbaum, Sur les densities de certaines suites d’entiers, Proc. London. Math. Soc. 3 (59) (1989), 417–438. Google Scholar

[6] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951), 241–244. Google Scholar

[7] A. R. Freedman, J. Sember and M. Raphael, Some Cesa`ro-type summability spaces, Proc. London Math. Soc. 37 (3) (1978), 508–520. Google Scholar

[8] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313. Google Scholar

[9] J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), 497–504. Google Scholar

[10] Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl. 455 (1) (2017), 528–537. Google Scholar

[11] Y. U. Gaba, Fixed points of rational type contractions in G-metric spaces, Cogent Mathematics, Statistics 5 (1) (2018), 1–14. Google Scholar

[12] S. Gahler, 2-metriche raume und ihre topologische strukture, Math. Nachr. 26(1963), 115–148. Google Scholar

[13] S. Gahler, Zur geometric 2-metriche raume, Reevue Roumaine de Math.Pures et Appl. XI (1966), 664–669. Google Scholar