On approximation properties of Stancu variant -Szász-Mirakjan-Durrmeyer operators
Main Article Content
Abstract
In the present paper, we aim to obtain several approximation properties of Stancu form Sz\'{a}sz-Mirakjan-Durrmeyer operators based on B\'{e}zier basis functions with shape parameter
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of λ-Kantorovich operators, J. Inequal. Appl., 2018 (2018), 202. Google Scholar
[2] A. Alotaibi, F. O ̈zger, S. A. Mohiuddine and M. A. Alghamdi, Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function, Adv. Differ. Equ., 2021 (2021), 1–14. Google Scholar
[3] F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, 17, Walter de Gruyter, 2011. Google Scholar
[4] K. J. Ansari, F. O ̈zger and Z. O ̈demi ̧s O ̈zger, Numerical and theoretical approximation results for Schurer–Stancu operators with shape parameter lambda, Comp. Appl. Math., 41 (2022), 1–18. Google Scholar
[5] R. Aslan, Some approximation results on λ-Szasz-Mirakjan-Kantorovich operators, FUJMA, 4 (2021), 150–158. Google Scholar
[6] R. Aslan, Approximation by Sz ́asz-Mirakjan-Durrmeyer operators based on shape parameter λ, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71 (2022), pp, 407-421. Google Scholar
[7] M. Ayman Mursaleen, A. Kilicman and Md. Nasiruzzaman, Approximation by q-Bernstein- Stancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36(4) (2022), 1179– 1194. Google Scholar
[8] M. Ayman Mursaleen and S. Serra-Capizzano, Statistical convergence via q-calculus and a ko- rovkin’s type Approximation theorem, Axioms, 11 (2022), 70. Google Scholar
[9] Q.B.Cai, K.J.Ansari, M.Temizer Ersoy and F.O ̈zger, Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10(7) (2022), 1149. Google Scholar
[10] Q. B. Cai and R. Aslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 13 (2021), 1919. Google Scholar
[11] Q. B. Cai and R. Aslan, Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter λ, Computer Modeling in Engineering & Sciences, 130 (2022), 1479– 1493. Google Scholar
[12] Q. B. Cai and W. T. Cheng, Convergence of λ-Bernstein operators based on (p,q)-integers, J. Inequal. Appl., 2020 (2020), 35. Google Scholar
[13] Q. B. Cai, A. Kilicman and M. Ayman Mursaleen, Approximation Properties and q-Statistical Convergence of Stancu-Type Generalized Baskakov-Sz ́asz Operators, J. Funct. Spaces, 2022 (2022). Google Scholar
[14] Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. Google Scholar
[15] Q. B. Cai, G. Zhou and J. Li, Statistical approximation properties of λ-Bernstein operators based on q-integers, Open Math., 17 (2019), 487–498. Google Scholar
[16] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Heidelberg, 1993. Google Scholar
[17] G. Farin, Curves and surfaces for computer-aided geometric design: a practical guide, Elsevier, 2014. Google Scholar
[18] A. D. Gadzhiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk., 218 (1974), 1001–1004. Google Scholar
[19] V. Gupta, Simultaneous approximation by Sz ́asz-Durrmeyer operators, Math. Stud., 64 (1995), 27—36. Google Scholar
[20] M. K. Gupta, M. S. Beniwal and P. Goel, Rate of convergence for Sz ́asz–Mirakyan–Durrmeyer operators with derivatives of bounded variation, Appl. Math. comput., 199 (2008), 828–832. Google Scholar
[21] V. Gupta, M. A. Noor and M. S. Beniwal, Rate of convergence in simultaneous approximation for Sz ́asz–Mirakyan–Durrmeyer operators, J. Math. Anal. Appl., 322 (2006), 964–970. Google Scholar
[22] K. Khan, D. K. Lobiyal and A. Kilicman, B ́ezier curves and surfaces based on modified Bernstein polynomials, Azerb. J. Math., 9 (2019), 3–21. Google Scholar
[23] P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90 (1953), 961–964. Google Scholar
[24] A. Kumar, Approximation properties of generalized λ-Bernstein-Kantorovich type operators, Rend. Circ. Mat. Palermo (2), 70 (2020), 505–520. Google Scholar
[25] S. Mazhar and V. Totik, Approximation by modified Sz ́asz operators, Acta Sci. Math., 49 (1985), 257–269. Google Scholar
[26] G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, 31 (1941), 201–205. Google Scholar
[27] V. N. Mishra and R. B. Gandhi, A summation-integral type modification of Sz ́asz-Mirakjan operators, Math. Methods Appl. Sci., 40 (2017), 175–182. Google Scholar
[28] V. N. Mishra, R. B. Gandhi and R. N. Mohapatra, A summation-integral type modification of Szasz-Mirakjan-Stancu operators, J. Numer. Anal. Approx. Theory, 45 (2016), 27–36. Google Scholar
[29] V. N. Mishra, R. B. Gandhi and F. Nasaireh, Simultaneous approximation by Sz ́asz-Mirakjan- Durrmeyer-type operators, Bollettino dell’Unione Matematica Italiana, 8 (2016), 297–305. Google Scholar
[30] M. Mursaleen, A. A. H. Al-Abied and M. A. Salman, Chlodowsky type (λ, q)-Bernstein-Stancu operators, Azerb. J. Math., 10 (2020), 75–101. Google Scholar
[31] M. Mursaleen, A. Alotaibi and K. J. Ansari, On a Kantorovich variant of-Sz ́asz-Mirakjan operators, J. Funct. Spaces, 2016 (2016). Google Scholar
[32] H. Oruc ̧ and G. M. Phillips, q-Bernstein polynomials and B ́ezier curves, J. Comput. Appl. Math., 151 (2003), 1–12. Google Scholar
[33] F. O ̈zger, Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators, Filomat, 33 (2019), 3473–3486. Google Scholar
[34] F.O ̈zger, Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two variables, Numer. Funct. Anal. Optim., 41 (2020), 1990-2006. Google Scholar
[35] F. O ̈zger, On new B ́ezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376–393. Google Scholar
[36] F.O ̈zger, E.Aljimi and M.Temizer Ersoy, Rate of weighted statistical convergence of generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. Google Scholar
[37] F. O ̈zger, K. Demirci and S. Yıldız, Approximation by Kantorovich variant of λ-Schurer op- erators and related numerical results, In: Topics in Contemporary Mathematical Analysis and Applications, pp. 77-94, CRC Press, Boca Raton, 2020. Google Scholar
[38] Q. Qi, D. Guo and G. Yang, Approximation properties of λ-Sz ́asz-Mirakian operators, Int. J. Eng. Res., 12 (2019), 662–669. Google Scholar
[39] S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of λ-Bernstein- Kantorovich operators with shifted knots, Math. Meth. Appl. Sci., 42 (2019), 4042–4053. Google Scholar
[40] T. W. Sederberg, Computer Aided Geometric Design Course Notes, Department of Computer Science Brigham Young University, October 9, 2014. Google Scholar
[41] H. M. Srivastava, K. J. Ansari, F. O ̈zger and Z. O ̈demi ̧s O ̈zger, A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. Google Scholar
[42] H.M.Srivastava, F.O ̈zger and S.A.Mohiuddine, Construction of Stancu-type Bernstein operators based on B ́ezier bases with shape parameter λ, Symmetry, 11 (2019), 316. Google Scholar
[43] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai Ser. Math.-Phys., 14 (1969), 31–45. Google Scholar
[44] O. Sz ́asz, Generalization of the Bernstein polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950) 239–245. Google Scholar
[45] Z. Ye, X. Long and X. M. Zeng, Adjustment algorithms for B ́ezier curve and surface, In: Inter- national Conference on Computer Science and Education, pp, 1712–1716, 2010. Google Scholar