Korean J. Math. Vol. 30 No. 4 (2022) pp.603-614
DOI: https://doi.org/10.11568/kjm.2022.30.4.603

Geraghty type contractions in $b-$metric-like spaces

Main Article Content

Surjeet Singh Chauhan(Gonder)
Kanika Rana
Mohammad Asim
Mohammad Imdad

Abstract

The main intent of this paper is to prove an existence and uniqueness fixed point result under Geraghty contractions in $b-$metric-like spaces, which remains an extended version of corresponding results in $b-$metric spaces and metric-like spaces. Using two types of Geraghty contractions, an approach is adopted to verify some fixed point results in $b-$metric-like spaces. Our main result is an extension of an earlier result given by Geraghty in $b-$metric-like-space. An example is also provided to demonstrate the validity of our main result. Moreover, as an application of our main result, the existence of solution of a Fredholm integral equation is established which may further be utilized to study the seismic response of dams during earthquakes.



Article Details

References

[1] H. Afshari, H. Aydi, E. Karapınar, On generalized α-ψ-Geraghty contractions on b−metric spaces, Georgian Math. J. 27 (1), (2020), 9–21. Google Scholar

[2] M. A. Alghamdi, N,. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b−metric-like spaces, J. Inequalities Appl. 2013 (1), (2013), 1–25. Google Scholar

[3] I. Altun, K. Sadarangani, Generalized Geraghty type mappings on partial metric spaces and fixed point results, Arab J. Math. 2 (3), (2013), 247–253. Google Scholar

[4] S. S. Alzaid, A. Fulga, F. S. Alshammari, Discussion on Geraghty Type Hybrid Contractions, J. Funct. Spaces. 2020, (2020), Article ID 6614291, doi.org/10.1155/2020/6614291. Google Scholar

[5] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (1), (2012), 1–10. Google Scholar

[6] M. Asim, A. R. Khan, M. Imdad, Fixed point results in partial symmetric spaces with an appli- cation, Axioms. 8 (13), (2019), doi:10.3390. Google Scholar

[7] M. Asim, M. Imdad and S. Radenovic : Fixed point results in extended rectangular b-metric spaces with an application, U.P.B. Sci. Bull., Series A. 81 (2), (2019), 1–8. Google Scholar

[8] M. Asim, A R. Khan and M. Imdad, Rectangular Mb-metric space and fixed point results, J. Math. Anal. 10, (2019), 10–18. Google Scholar

[9] M. Asim, S. Mujahid, and I. Uddin, Meir-Keeler Contraction In Rectangular M-Metric Space, Topol. Algebra Appl. 9, (2021), 96–104. Google Scholar

[10] S. Chandok, A. Chanda, L. K. Dey, M. Pavlovic, S. Radenovic, Simulation functions and Ger- aghty type results, Bol. da Soc. Parana. de Mat. 39 (1), (2021), 35–50. Google Scholar

[11] S. S. Chauhan and K. Sharma, Hybrid type fixed point theorem on generalized bmetric space, Adv Appl Math Sci. 19, (2020), 793–799. Google Scholar

[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1), (1993), 5–11. Google Scholar

[13] H.-S. Ding, M. Imdad, S. Radenovic, J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci. 22 (2), (2016), 151–164. Google Scholar

[14] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl. 8 (6), (2015), 1014–1021. Google Scholar

[15] O. Ege, Some fixed point theorems in complex valued Gb-metric spaces, J. Nonlinear Convex Anal. 18 (11), (2017), 1997–2005. Google Scholar

[16] O. Ege and I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai J. Math. 16 (3), (2018) 775–787. Google Scholar

[17] H. Faraji, D. Savi ́c, S. Radenovi ́c, Fixed point theorems for Geraghty contraction type mappings in b−metric spaces and applications, Axioms. 8 (34), (2019), 1–12. Google Scholar

[18] M. A. Geraghty, On contractive mappings, Proc. Am. Math. Soc. 40 (2), (1973), 604–608. Google Scholar

[19] A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Mathematics. 6 (2), (2021), 1781–1799. Google Scholar

[20] V. Gupta, S. S. Chauhan, I. K. Sandhu, Banach Contraction Theorem on Extended Fuzzy Cone b−metric Space, Thai J. Math. 20 (1), (2022), 177–194. Google Scholar

[21] Z. Kadelburg and S. Radenovic, Pata-type common fixed point results in b-metric and b-rectangular metric spaces, Journal of Nonlinear Analysis and Applications, 8 (2015), 944–954. Google Scholar

[22] H. Huang, L. Paunovic, S. Radenovic, On some new fixed point results for rational Geraghty contractive mappings in ordered b−metric spaces, J. Nonlinear Sci. Appl. 8, (2015), 800–807. Google Scholar

[23] N. Hussain, J. R. Roshan, V Parvaneh, M. Abbas, Common fixed point results for weak contractive mappings in ordered b−dislocated metric spaces with applications, J. Inequalities Appl. 2013 (1), (2013), 1–21. Google Scholar

[24] N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in-metric-like spaces, Sci. World J. 2014, (2014), Article ID 471827, doi.org/10.1155/2014/471827. Google Scholar

[25] M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of generalized weak contraction in b-metric spaces, J. Funct. Spaces. 2021, (2021), Article ID 2042162, 1–8. Google Scholar

[26] M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of almost contraction in b-metric spaces, J. Math.. 2020, (2020), Article ID 33218134 1–6. Google Scholar

[27] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1), (1994), 183–197. Google Scholar

[28] Z. D. Mitrovic, A note on a Banach’s fixed point theorem in b-rectangular metric space and b-metric space, Math. Slovaca. vol. 68 (5), (2018), pp. 1113–1116. Google Scholar

[29] T. L. Shateri, O. Ege and M. de la Sen, Common fixed point on the bv(s)-metric space of function-valued mappings, AIMS Mathematics, 6 (1), (2021), 1065–1074. Google Scholar

[30] S. Shukla, Partial b−metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2), (2014), 703–711. Google Scholar

[31] F. Zabihi, A. Razani, Fixed point theorems for hybrid rational Geraghty contraction mappings in ordered-metric spaces, J. Appl. Math. 2014, (2014), Article ID 929821, doi.org/10.1155/2014/929821. Google Scholar