Some results for the class of analytic functions concerned with symmetric points
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126 (1) (2016), 69–78. Google Scholar
[2] T. A. Azero ̆glu and B. N. O ̈rnek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013), 571–577. Google Scholar
[3] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770–785. Google Scholar
[4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci. 122 (2004), 3623–3629. Google Scholar
[5] G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. Google Scholar
[6] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469–474. Google Scholar
[7] M. Mateljevi ́c, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press. Google Scholar
[8] M. Mateljevi ́c, N. Mutavdˇz ́c and B. N. O ̈rnek, Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma, Appl. Anal. Discrete Math., 16 (2022), 111–131. Google Scholar
[9] P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018), 93–97. Google Scholar
[10] P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140–1144. Google Scholar
[11] M. Nunokawa, J. Sok ́ol and H. Tang, An application of Jack-Fukui-Sakaguchi lemma, Journal of Applie Analysis and Computation, 10 (2020), 25–31. Google Scholar
[12] M. Nunokawa and J. Sok ́ol, On a boundary property of analytic functions, J. Ineq. Appl., 2017:298 (2017), 1–7. Google Scholar
[13] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513–3517. Google Scholar
[14] B. N. O ̈rnek and T. Akyel, On bounds for the derivative of analytic functions at the boundary, Korean J. Math., 29 (4) (2021), 785–800. Google Scholar
[15] B. N. O ̈rnek and T. Du ̈zenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (9) (2018) 1149–1153. Google Scholar
[16] B. N. O ̈rnek and T. Du ̈zenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13 (2) (2019), 145–152. Google Scholar
[17] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. Google Scholar
[18] H. Unkelbach, U ̈ber die Randverzerrung bei konformer Abbildung, Math. Z., 43 (1938), 739–742. Google Scholar