Korean J. Math. Vol. 32 No. 1 (2024) pp.43-57
DOI: https://doi.org/10.11568/kjm.2024.32.1.43

VC-dimension and distance chains in Fqd

Main Article Content

Ruben Ascoli
Livia Betti
Justin Cheigh
Alex Iosevich
Ryan Jeong
Xuyan Liu
Brian McDonald
Wyatt Milgrim
Steven J. Miller
Francisco Romero Acosta
Santiago Velazquez Iannuzzelli

Abstract

Given a domain X and a collection H of functions h:X{0,1}, the Vapnik-Chervonenkis (VC) dimension of H measures its complexity in an appropriate sense. In particular, the fundamental theorem of statistical learning says that a hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions Ht2(E):Fq2{0,1}, corresponding to indicator functions of circles centered at points in a subset EFq2. They showed that when |E| is large enough, the VC-dimension of Ht2(E) is the same as in the case that E=Fq2. We study a related hypothesis class, Htd(E), corresponding to intersections of spheres in Fqd, and ask how large EFqd needs to be to ensure the maximum possible VC-dimension. We resolve this problem in all dimensions, proving that whenever |E|Cdqd1/(d1) for d3, the VC-dimension of Htd(E) is as large as possible. We get a slightly stronger result if d=3: this result holds as long as |E|C3q7/3. Furthermore, when d=2 the result holds when |E|C2q7/4.



Article Details

Supporting Agencies

NSF grant DMS1947438 and Williams College University of Michigan NSF grant HDR TRIPODS - 1934962 and NSF grant DMS2154232

References

[1] M. Bennett, J. Chapman, D. Covert, D. Hart, A. Iosevich, J. Pakianathan, Long paths in the distance graph over large subsets of vector spaces over finite fields, Korean Math. Soc. 53 (1) (2016), 115–126. https://doi.org/10.4134/JKMS.2016.53.1.115 Google Scholar

[2] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, M. Rudnev, Group actions and geometric combinatorics in Fdq , Forum Math. 29 (1) (2017), 91–110. https://doi.org/10.1515/forum-2015-0251 Google Scholar

[3] D. Fitzpatrick, A. Iosevich, B. McDonald, E. Wyman, The VC-dimension and point configurations in F2q, Discrete Comput. Geom. (2023). https://doi.org/10.1007/s00454-023-00570-5 Google Scholar

[4] D. Hart, A. Iosevich, D. Koh, S. Senger, I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, Recent advances in harmonic analysis and applications (2013), 139–160. https://doi.org/10.1007/978-1-4614-4565-4_14 Google Scholar

[5] A. Iosevich, G. Jardine, B. McDonald, Cycles of arbitrary length in distance graphs on Fdq, Tr. Mat. Inst. Steklova 314 (1) (2021) 27–43. https://doi.org/10.1134/S0081543821040027 Google Scholar

[6] A. Iosevich, B. McDonald, M. Sun, Dot products in F3q and the Vapnik-Chervonenkis dimension, Discrete Math. 346 (1) (2023), Paper No. 113096. https://doi.org/10.1016/j.disc.2022.113096 Google Scholar

[7] A. Iosevich, H. Parshall, Embedding distance graphs in finite field vector spaces, J. Korean Math. Soc. 56 (6) (2019), 1515–1528. https://doi.org/10.4134/JKMS.j180776 Google Scholar

[8] A. Iosevich, M. Rudnev, Erdos distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc 359 (12) (2007), 6127–6142. https://doi.org/10.48550/arXiv.math/0509005 Google Scholar

[9] M. Kearns, U. Vazirani, An introduction to computational learning theory, MIT press, 1994. https://doi.org/10.7551/mitpress/3897.001.0001 Google Scholar

[10] H. Minkowski, Grundlagen fu ̈r eine Theorie quadratischen Formen mit ganzahligen Koeffizienten, Gesammelte Abhandlungen (1911), 3–145. https://doi.org/10.1007/978-3-540-34720-0_18 Google Scholar

[11] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge university press, 2014. https://doi.org/10.1017/CBO9781107298019 Google Scholar