VC-dimension and distance chains in
Main Article Content
Abstract
Given a domain
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
Supporting Agencies
References
[1] M. Bennett, J. Chapman, D. Covert, D. Hart, A. Iosevich, J. Pakianathan, Long paths in the distance graph over large subsets of vector spaces over finite fields, Korean Math. Soc. 53 (1) (2016), 115–126. https://doi.org/10.4134/JKMS.2016.53.1.115 Google Scholar
[2] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, M. Rudnev, Group actions and geometric combinatorics in Fdq , Forum Math. 29 (1) (2017), 91–110. https://doi.org/10.1515/forum-2015-0251 Google Scholar
[3] D. Fitzpatrick, A. Iosevich, B. McDonald, E. Wyman, The VC-dimension and point configurations in F2q, Discrete Comput. Geom. (2023). https://doi.org/10.1007/s00454-023-00570-5 Google Scholar
[4] D. Hart, A. Iosevich, D. Koh, S. Senger, I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, Recent advances in harmonic analysis and applications (2013), 139–160. https://doi.org/10.1007/978-1-4614-4565-4_14 Google Scholar
[5] A. Iosevich, G. Jardine, B. McDonald, Cycles of arbitrary length in distance graphs on Fdq, Tr. Mat. Inst. Steklova 314 (1) (2021) 27–43. https://doi.org/10.1134/S0081543821040027 Google Scholar
[6] A. Iosevich, B. McDonald, M. Sun, Dot products in F3q and the Vapnik-Chervonenkis dimension, Discrete Math. 346 (1) (2023), Paper No. 113096. https://doi.org/10.1016/j.disc.2022.113096 Google Scholar
[7] A. Iosevich, H. Parshall, Embedding distance graphs in finite field vector spaces, J. Korean Math. Soc. 56 (6) (2019), 1515–1528. https://doi.org/10.4134/JKMS.j180776 Google Scholar
[8] A. Iosevich, M. Rudnev, Erdos distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc 359 (12) (2007), 6127–6142. https://doi.org/10.48550/arXiv.math/0509005 Google Scholar
[9] M. Kearns, U. Vazirani, An introduction to computational learning theory, MIT press, 1994. https://doi.org/10.7551/mitpress/3897.001.0001 Google Scholar
[10] H. Minkowski, Grundlagen fu ̈r eine Theorie quadratischen Formen mit ganzahligen Koeffizienten, Gesammelte Abhandlungen (1911), 3–145. https://doi.org/10.1007/978-3-540-34720-0_18 Google Scholar
[11] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge university press, 2014. https://doi.org/10.1017/CBO9781107298019 Google Scholar