Construction of the first layer of anti-cyclotomic extension
Main Article Content
Abstract
imaginary quadratic fields.
Article Details
References
[1] D.Brink, Prime decomposition in the anti-cyclotomic extensions, Mathematics of Computation, 76(2007), no.260, 2127-2138. Google Scholar
[2] H.Cohen, Advanced Topics in Computational Number Theory, Springer (1999) Google Scholar
[3] R.Greenberg, On the Iwasawa invariants of totally real number fields, American Journal of Math., 98(1976), no.1, 263-284. Google Scholar
[4] J.Minardi, Iwasawa modules for ${mathbb Z}_{p}^{d}$-extensions of algebraic number fields, Google Scholar
[5] Ph.D dissertation, University of Washington, 1986. Google Scholar
[6] J.Oh, On the first layer of anti-cyclotomic ${mathbb Z}_{p}$-extension over imaginary quadratic fields, Proc. Japan Acad. Ser.A Math.Sci.,83(2007), no.3, 19-20. Google Scholar
[7] J.Oh, A note on the first layers of ${mathbb Z}_{p}$-extensions, Commun. Korean Math. Soc., Google Scholar
[8] (2009), no.3, 1-4. Google Scholar
[9] J.Oh, Construction of 3-Hilbert class field of certain imaginary quadratic fields, Proc. Japan Aca. Ser.A Math. Sci., 86(2010), no.1, 18-19 . Google Scholar
[10] J.Oh, Anti-cyclotomic extension and Hilbert class field, Journal of the Chungcheong Math. Society, 25(2012), no.1, 91-95 . Google Scholar