Korean J. Math. Vol. 31 No. 2 (2023) pp.153-160
DOI: https://doi.org/10.11568/kjm.2023.31.2.153

On the growth of polynomials

Main Article Content

Rubia Akhter
B. A. Zargar
M. H. Gulzar

Abstract

In this paper, we study the growth of polynomials $P(z)$ of degree $n$ defined by $P(z)=z^s(a_0+\sum\limits_{j=t}^{n-s}a_j z^j),\quad t\geq 1,\quad 0\leq s\leq n-1$ which do not vanish in the disk $|z|\leq k, \quad k\geq 1$ except for the $s$-fold zeros at origin. Our result generalises and refines many results known in the literature.



Article Details

References

[1] N. C. Ankeny and T. J. Rivilin, On a Theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849–862. Google Scholar

[2] A. Dalal and N. K. Govil, On sharpening of a Theorem of Ankeny and Rivilin, Anal. Theory Appl. 36 (2018), 225–234. Google Scholar

[3] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not vanishing inside a circle, J. Ineq. Pure Appl. Math. 6 (2005), Art 53. Google Scholar

[4] R. B. Gardner, N. K. Govil and A. Weems, Growth of polynomial not vanishing inside a circle, Int. J. Pure Appl. Math., 13(2004), 487-494. Google Scholar

[5] N. K. Govil, On the maximum modulus of polynomials not vanishing inside the unit circle, Approx. Theory Appl. 5 (1989), 79–82. Google Scholar

[6] N. K. Govil, On the growth of polynomials, J. Ineq. Appl. 7 (2002), 623–631. Google Scholar

[7] N. K. Govil, M. A. Qazi and Q. I. Rahman, Inequalities describing the growth of polynomialsnot vanishing in a disk of prescribed radius, Math. Inequal. Appl. 6 (2003), 491–498. Google Scholar

[8] E. Khojastehnezhad and M. Bidkham, Generalisation of some inequalities for the polar derivative of polynomials with restricted zeros, TWMS J. App. Eng. Math. 9 (2019), 485–492. Google Scholar

[9] M. Riesz, U ̈ber einen Satz des Herrn Serge Bernstein, Acta. Math. 40 (1916), 337–347. Google Scholar