On the number of zeros of bicomplex entire functions
Main Article Content
Abstract
This paper portrays the results on bicomplex entire functions that are concerned with the positioning of zeros of Eneström-Kakeya type. Moreover, some examples are provided to validate our results.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] M. Bidkham and S. Ahmadi, Generalization of the Gauss-Lucas theorem for bicomplex polynomials, Turk. J. Math. 41 (2017), 1618–1627. Google Scholar
[2] N. Carney, R. Gardner, R. Keaton, and A. Powers, The Enestr ̈om-Kakeya theorem of a quaternionic variable, J. Appl. Theory 250 (2020), 105–325. Google Scholar
[3] J. B. Conway, Function of one complex variable, 2nd edition Springer-Verlag, 1978. Google Scholar
[4] N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya theorem II, Tohoku Math. J. 20 (1968), 126–136. Google Scholar
[5] A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials, Can. Math. Bull. 10 (1967), 53–63. Google Scholar
[6] J. Kumar and R. K. Srivastava, On a class of entire bicomplex sequences, South East Asian J. Math. Sci. 5 (3) (2007), 47–67. Google Scholar
[7] M. E. Luna-Elizarrar ́as, M. Shapiro, D. C. Struppa, and A. Vajiac, Bi-complex Holomorphic Functions, The Algebra, Geometry and Analysis of Bi-complex Numbers. Birkh ̈auser (2015). Google Scholar
[8] M. E. Luna-Elizarrar ́as, M. Shapiro, D. C. Struppa, and A. Vajiac, Bi-complex numbers and their elementary functions, Cubo 14 (2) (2012), 61–80. Google Scholar
[9] M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer. Math. Soc. (1966). Google Scholar
[10] A. A Pogorui and R. M. Rodriguez-dagnino, On the set of zeros of bi-complex polynomials, Complex Variables and Elliptic Equations 51:7 (2006), 725–730. Google Scholar
[11] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monographs and Textbooks in Pure and Applied Mathematics, 140, Marcel Dekker, Inc., New York, 1991. Google Scholar
[12] C. Segre, Le rappresentation reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413–467. Google Scholar
[13] W. M. Shah and A. Liman, On Enestrom-Kakeya theorem and related analytic functions, Proc. Indian Acad. Sci. 3 (2007), 359–370. Google Scholar