Korean J. Math. Vol. 31 No. 3 (2023) pp.323-337
DOI: https://doi.org/10.11568/kjm.2023.31.3.323

Integration of bicomplex valued function along hyperbolic curve

Main Article Content

Chinmay Ghosh
Soumen Mondal

Abstract

In this paper, we have defined bicomplex valued functions of bounded variations and rectifiable hyperbolic path. We have studied the integration of product-type bicomplex valued functions on rectifiable hyperbolic path. Also we have established bicomplex analogue of the Fundamental Theorem of Calculus for hyperbolic line integral.



Article Details

References

[1] D. Alpay, M.E. Luna-Elizarrar ́as, M. Shapiro and D.C. Struppa, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer International Publishing, (2014). Google Scholar

[2] A.S.Balankin, J.Bory-Reyes, M.E.Luna-Elizarrar ́as and M.Shapiro, Cantor-typesetsin hyperbolic numbers, Fractals, 24 (04) (2016). Google Scholar

[3] J. Bory-Reyes, C.O. P ́erez-Regalado and M. Shapiro, Cauchy type integral in bicomplex setting and its properties, Complex Anal. Oper. Theory, 13 (6) (2019), 2541–2573. Google Scholar

[4] J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3 (33) (1848), 435–439. Google Scholar

[5] J.B. Conway, Functions of One Complex Variable I, Second Edition, Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, (1978). Google Scholar

[6] C.M. Davenport, R. Ablamowicz, J.M. Parra, M. Josep and P. Lounesto, A Commutative Hypercomplex Algebra with Associated Function Theory, Clifford Algebras with Numeric and Symbolic Computations, Birkh ̈auser, Boston, (1996), 213–227. Google Scholar

[7] C. Ghosh, A. Bandyopadhyay and S. Mondal, Hyperbolic Valued Metric Space, ArXiv [math.CV] (2021), arXiv:2108.07100. Google Scholar

[8] C. Ghosh, S. Biswas and T. Yasin, Hyperbolic valued signed measures, Int. J. Math. Trends Technol., 55 (7) (2018), 515–522. Google Scholar

[9] W.R. Hamilton, On a new species of imaginary quantities connected with a theory of quater- nions, Proc. R. Ir. Acad., 2 (1844), 424–434. Google Scholar

[10] M.E. Luna-Elizarrar ́as, Integration of Functions of a Hyperbolic Variable, Complex Anal. Oper. Theory, 16, 35 (2022). https://doi.org/10.1007/s11785-022-01197-9. Google Scholar

[11] M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa and A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics, Birkh ̈auser Basel, (2015). Google Scholar

[12] G.B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker Inc., New York, (1991). Google Scholar

[13] H. Saini, A. Sharma, R. Kumar, Some Fundamental Theorems of Functional Analysis with Bicomplex and Hyperbolic Scalars, Adv. Appl. Clifford Algebras, 30 (66) (2020), 01–23. Google Scholar

[14] C. Segre, Le rappresentazioni reali delle forme complessee Gli Enti Iperalgebrici, Math. Ann., 40 (1892), 413–467. Google Scholar

[15] G. Sobczyk, The hyperbolic number plane, Coll. Maths. Jour., 26 (4) (1995), 268–280. https://doi.org/10.1080/07468342.1995.11973712 Google Scholar

[16] G.Y. Tellez-Sanchez and J.B Rayes, Hyperbolic Functions of Bounded Variations and Riemann-Stieltjes Integral involving strong partitions of Hyperbolic Intervals, arXiv:2111.14019v1[math.CV], 1–12. Google Scholar