Korean J. Math. Vol. 31 No. 4 (2023) pp.495-504
DOI: https://doi.org/10.11568/kjm.2023.31.4.495

Some results related to non-degenerate linear transformations on Euclidean Jordan algebras

Main Article Content

K. Saravanan
V. Piramanantham
R. Theivaraman

Abstract

This article deals with non-degenerate linear transformations on Euclidean Jordan algebras. First, we study non-degenerate for cone invariant, copositive, Lyapunov-like, and relaxation transformations. Further, we study that the non-degenerate is invariant under principal pivotal transformations and algebraic automorphisms.



Article Details

References

[1] Cottle, R. W., Pang, J. S., Stone, R. E., The linear complementarity problem, Academic Press, Boston (1992). Google Scholar

[2] Facchinei, F., Pang, J. S., Finite dimensional variational inequalities and complementarity problems, Springer, New York (2003). Google Scholar

[3] Gowda, M. S., Sznajder, R., Tao, J., Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl. 393 (2004), 203–232. Google Scholar

[4] Faraut, J., Koranyi, A., Analysis on symmetric cones, Oxford University Press, Oxford(1994). Google Scholar

[5] Gowda, M. S., Sznajder, R., Automorphism invariance of P-and GUS-properties of linear transformations on Euclidean Jordan algebras, Math. Oper. Res. 31 (2006), 109–123. Google Scholar

[6] Tao, J., Strict semimonotonicity property of linear transformations on Euclidean Jordan algebras, J. Optim. Theory Appl. 144 (2010), 575–596. Google Scholar

[7] Murty, K. G., On the number of solutions to the complementarity problem and spanning properties of complementary cones, Linear Algebra Appl. 5 (1972), 65–108. Google Scholar

[8] Gowda, M. S., Song, Y., Some new results for semidefinite linear complementarity problems, SIAM J. Matrix Anal. Appl. 24 (2002), 25–39. Google Scholar

[9] Gowda, M. S., Sznajder, R., Some global uniquness and solvability results for linear complementarity problem over symmetric cones, SIAM J. Optim. 18 (2007), 461–481. Google Scholar

[10] Alizadeh, F., Goldfarb, D., Second order cone programming, Math. Program., Ser. B 95 (2003), 3–51. Google Scholar

[11] Gowda, M. S., Tao, J., Z-transformations on proper and symmetric cones, Math. Program., Ser. B 117 (2009), 195–221. Google Scholar

[12] Tao,J. Gowda, M. S., Some P-properties for nonlinear transformations on Euclidean Jordan algebras, Mathematics of Operations Research 30 (2005), 985–1004. Google Scholar

[13] Tao, J., Jeyaraman, I., Ravindran, G., More results on column sufficiency property in Euclidean Jordan algebras, Annals of operation research 243 (2016), 229–243. Google Scholar