Korean J. Math. Vol. 31 No. 3 (2023) pp.305-311
DOI: https://doi.org/10.11568/kjm.2023.31.3.305

Bounded function on which infinite iterations of weighted Berezin transform exist

Main Article Content

Jaesung Lee

Abstract

We exhibit some properties of the weighted Berezin transform $T_{\alpha}f$ on $L^{\infty}(B_{n})$ and on $L^{1}(B_{n})$. As the main result, we prove that if $f \in L^{\infty}(B_{n})$ with $\lim_{k\rightarrow\infty} T_{\alpha}^{k}f$ exists, then there exist unique $\mathcal{M}$-harmonic function $g$ and $h \in \overline{(I-T_{\alpha})L^{\infty}(B_{n})}$ such that $f=g+h$. We also show that of the norm of weighted Berezin operator $T_{\alpha}$ on $L^{1}(B_n, \nu)$ converges to 1 as $\alpha$ tends to infinity, where $\nu$ is an ordinary Lebesgue measure.



Article Details

References

[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (2) (1993), 380–397. Google Scholar

[2] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (2) (1963), 335–386. Google Scholar

[3] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313–328. Google Scholar

[4] J. Lee., Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489—1493. Google Scholar

[5] J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), 113–119. Google Scholar

[6] J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (3) (2020), 449–457. Google Scholar

[7] J. Lee, More properties of weighted Berezin transform in the unit ball of Cn, Korean J. Math. 30 (3) (2022), 459–465. Google Scholar

[8] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York Inc., 1980. Google Scholar