A new Banach space defined by absolute Jordan totient means
Main Article Content
Abstract
In the present study, we have constructed a new Banach series space $\left\vert \Upsilon ^{r}\right\vert _{p}^{u}$ by using concept of absolute Jordan totient summability $\left\vert \Upsilon ^{r},u_{n}\right\vert _{p}$ which is derived by the infinite regular matrix of the Jordan's totient function. Also, we prove that the series space $\left\vert \Upsilon ^{r}\right\vert _{p}^{u}$ is linearly isomorphic to the space of all $p$-absolutely summable sequences $\ell _{p}$ for $p\geq 1$. Moreover, we compute the $\alpha $-$,\beta $- and $\gamma $- duals of this space and construct Schauder basis for the series space $\left\vert \Upsilon^{r}\right\vert _{p}^{u}.$ Finally, we characterize the classes of infinite matrices $\left( \left\vert \Upsilon ^{r}\right\vert _{p}^{u},X\right) $ and $\left( X,\left\vert \Upsilon ^{r}\right\vert _{p}^{u}\right) ,$ where $X$ is any given classical sequence spaces $\ell _{\infty },$ $c,$ $c_{0}$ and $\ell _{1}$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] S.D. Adhikari and A. Sankaranarayanan, On an error term related to the Jordan totient function Jk(n), J. Number Theory 34 (2) (1990), 178–188, 521–555. https://dx.doi.org/10.1016/0022-314x(90)90148-k Google Scholar
[2] D. Andrica and M. Piticari, On some extensions of Jordan’s arithmetic functions, Acta Univ. Apulensis Math. Inf. No. 7 (2004), 13–22. Google Scholar
[3] E. Cohen, Theorie des nombres, Herman, Paris, (1914). Google Scholar
[4] G.C. Hazar Gulec and M. Ilkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math. 28 (2) (2020), 205–221. https://dx.doi.org/10.11568/kjm.2020.28.2.205 Google Scholar
[5] M. Ilkhan and E.E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices 13 (2) (2019), 527–544. https://dx.doi.org/10.7153/oam-2019-13-40 Google Scholar
[6] M. Ilkhan and G.C. Hazar Gulec, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol. 6 (1) (2020), 112–119. https://dx.doi.org/10.22531/muglajsci.727517 Google Scholar
[7] M. Ilkhan, N. Simsek and E.E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in lp, Math. Methods Appl. Sci. 44 (9) (2021), 7622–7633. https://dx.doi.org/10.1002/mma.6501 Google Scholar
[8] M. Ilkhan and M.A. Bayrakdar, A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences, Commun. Adv. Math. Sci. 4 (2021), 14–25. Google Scholar
[9] C. Jordan, Traité des substitutions et des équations algébriques, New edition Gauthier-Villars, Paris, (1957). Google Scholar
[10] E.E. Kara and M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (11) (2016), 2208–2223. https://dx.doi.org/10.1080/03081087.2016.1145626 Google Scholar
[11] I.J. Maddox, Elements of functional analysis, Cambridge University Press, New York, (1970). Google Scholar
[12] G. Mani, L.N. Mishra and V.N. Mishra, Common fixed point theorems in complex partial bmetric space with an application to integral equations, Adv. Stud.: Euro-Tbil. Math. J. 15 (1) (2022), 129–149. Google Scholar
[13] P.J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, (1986). https://dx.doi.org/10.1007/978-1-4613-8620-9 Google Scholar
[14] V.K. Pathak, L.N. Mishra, V.N. Mishra and D. Baleanu, On the solvability of mixed-type fractional-order non-linear functional integral equations in the Banach space C(I), Fractal and Fractional 6 (12) (2022), 744. https://dx.doi.org/10.3390/fractalfract6120744 Google Scholar
[15] V.K. Pathak, L.N. Mishra and V.N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdélyi–Kober fractional operator, Math. Methods Appl. Sci. (2023), 1–13. https://dx.doi.org/10.1002/mma.9322 Google Scholar
[16] S.K. Paul, L.N. Mishra, V.N. Mishra and D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Math. 8 (8) (2023), 17448–17469. https://dx.doi.org/10.3934/math.2023891 Google Scholar
[17] F. Pelletier, Projective limit of a sequence of compatible weak symplectic forms on a sequence of Banach bundles and Darboux Theorem, Bull. Sci. Math. 169 (2021), 102989. https://dx.doi.org/10.1016/j.bulsci.2021.102974 Google Scholar
[18] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010), 3386–3390. https://dx.doi.org/10.1016/j.amc.2010.04.070 Google Scholar
[19] J. Sandor, D.S. Mitrinovic and B. Crstici, Handbook of Number Theory I, Springer-Verlag, (2006). https://dx.doi.org/10.1007/1-4020-3658-2 Google Scholar
[20] S. Serbenyuk, Rational numbers defined in terms of certain generalized series, Acta Math. Hungar 164 (2021), 580–592. https://dx.doi.org/10.1007/s10474-021-01163-5 Google Scholar
[21] S. Shafi and L.N. Mishra, Iterating a system of variational-like inclusion problems in Banach spaces, J. Nonl. Mod. Anal. 3 (2) (2021), 283–300. https://dx.doi.org/10.12150/jnma.2021.283 Google Scholar
[22] M. Stieglitz and H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisübersicht, Math Z. 154 (1977), 1–16. ISSN: 0025-5874; 1432-1823. Google Scholar
[23] S. Thajoddin and S. Vangipuram, A note on Jordan’s totient function, Indian J. Pure Appl. Math. 19 (12) (1988), 1156–1161. Google Scholar
[24] O. Tuğ, The spaces of B(r, s, t, u) strongly almost convergent double sequences and matrix transformations, Bull. Sci. Math. 169 (2021), 102989. https://dx.doi.org/10.1016/j.bulsci.2021.102989 Google Scholar
[25] A. Wilansky, Summability through functional analysis, North-Holland Mathematical Studies, vol. 85, Elsevier Science Publisher, (1984). ISBN 0080871968, 9780080871967. Google Scholar
[26] P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci. 44 (9) (2021), 7651–7658. Google Scholar