Korean J. Math. Vol. 31 No. 4 (2023) pp.445-463
DOI: https://doi.org/10.11568/kjm.2023.31.4.445

Direct product, subdirect product, and representability in autometrized algebras

Main Article Content

Gebrie Yeshiwas Tilahun
Radhakrishna Kishore Parimi
Mulugeta Habte Melesse

Abstract

The paper introduces the concept of direct product and discusses some basic facts about distant ideals. We also introduce the definition of directly indecomposable in an autometrized algebra. Furthermore, we present the concept of a subdirect product and simple autometrized algebra and its behavior. We also introduce the definition of subdirectly irreducible in an autometrized algebras. In particular, we prove that every subdirectly irreducible monoid autometrized algebra is directly indecomposable. Finally, we discuss different properties of chain autometrized algebras and introduce the representability in the autometrized algebra. We also prove that if a weak chain monoid normal autometrized l-algebra is nilradical, then it is representable.



Article Details

References

[1] K. N. Swamy, A general theory of autometrized algebras, Math. Ann. 157 (1) (1964), 65–74. Google Scholar

[2] L. M. Blumenthal, Boolean geometry. 1, Bull. New. Ser. Am. Math. Soc. 58 (4) (1952), 501–501. Google Scholar

[3] D. Ellis, Autometrized boolean algebras i: Fundamental distance-theoretic properties of b, Can. J. Math. 3 (1951), 87–93. Google Scholar

[4] E. Nordhaus and L. Lapidus, Brouwerian geometry, Can. J. Math. 6 (1954), 217–229. Google Scholar

[5] K. R. Roy, Newmannian geometry i, Bull. Calcutta Math. Soc. 52 (1960), 187–194. Google Scholar

[6] K. Narasimha Swamy, Autometrized lattice ordered groups i, Math. Ann. 154 (5) (1964), 406–412. Google Scholar

[7] K. Swamy and N. P. Rao, Ideals in autometrized algebras, J. Aust. Math. Soc. 24 (3) (1977), 362–374. Google Scholar

[8] J. Rachu ̆nek, Prime ideals in autometrized algebras, Czechoslov. Math. J. 37 (1) (1987), 65–69. Google Scholar

[9] J. Rachu ̆nek, Polars in autometrized algebras, Czechoslov. Math. J. 39 (4) (1989), 681–685. Google Scholar

[10] J. Rachu ̆nek, Regular ideals in autometrized algebras, Math. Slovaca. 40 (2) (1990), 117–122. Google Scholar

[11] J. Rachu ̆nek, Spectra of autometrized lattice algebras, Math. Bohem. 123 (1) (1998), 87–94. Google Scholar

[12] M. E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslov. Math. J. 44 (1) (1994), 81–90. Google Scholar

[13] T. Kov ́aˇr, Normal autometrized lattice ordered algebras, Math. Slovaca. 50 (4) (2000), 369–376. Google Scholar

[14] I. Chajda and J. Rachunek, Annihilators in normal autometrized algebras, Czechoslov. Math. J. 51 (1) (2001), 111–120. Google Scholar

[15] B. Subba Rao and P. Yedlapalli, Metric spaces with distances in representable autometrized algebras, Southeast Asian Bull. Math. 42 (3) (2018), 453–462. Google Scholar

[16] B. Rao, A. Kanakam, and P. Yedlapalli, A note on representable autometrized algebras, Thai J. Math. 17 (1) (2019), 277–281. Google Scholar

[17] B. Rao, A. Kanakam, and P. Yedlapalli, Representable autometrized semialgebra, Thai J. Math. 19 (4) (2021), 1267–1272. Google Scholar

[18] B. Rao, A. Kanakam, and P. Yedlapalli, Representable autometrized algebra and mv algebra, Thai J. Math. 20 (2) (2022), 937–943. Google Scholar

[19] G. Y. Tilahun, R. K. Parimi, and M. H. Melesse, Structure of an autometrized algebra, Research in Mathematics. 10 (1) (2023), 2192856. Google Scholar

[20] G. Y. Tilahun, R. K. Parimi, and M. H. Melesse, Equivalent conditions of normal autometrized l-algebra, Research in Mathematics. 10 (1) (2023), 2215037. Google Scholar