Liftings of a complemented subspace of $\mathcal{L}_1-$spaces
Main Article Content
Abstract
In this article, we prove that an infinite dimensional complemented subspace $X$ of $\mathcal{L}_{1}$-space $Z$ with unconditional basis $(x_n )$ has the lifting property. Hence we can give an alternative proof that $X$ is isomorphic to $\ell_1$ given by Lindenstrauss and Pelczy\'nski.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
Supporting Agencies
References
[1] J. Diestel, H. Jarchow and A.Tonge, Absolutely summing operators, Cambridge Univ. Press (1995). Google Scholar
[2] A. Grothendieck Une caraterisation vectorielle-m ́etrique L1, Canad J. Math. 7 (1955), 552–562 MR17. Google Scholar
[3] G. K ̈othe Hebbare lokakonvex Raumes , Math. Ann., 4651. vol 165 (1993), 188–195. Google Scholar
[4] W.B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier Science B.V.(2001). Google Scholar
[5] J. Lindenstrauss, On a certain subspace of l1, Bull. Pol. Sci. 12 (9) (1964), 539–542. Google Scholar
[6] J. Lindenstrauss and A. Pelczyn ́ski, Absolutely summing operators in Lp−spaces and their applications, Studia Math. 29 (1968), 275–326. Google Scholar
[7] A. Pelczyn ́ski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. Google Scholar
[8] G. Pisier Factorizations of linear operators and geometry of Banach spaces, C.B.M.S. Amer. Math.Soc. 60 (1985). Google Scholar