Hadamard-type inequalities on the coordinates for $(h_1, h_2, h_3)$-preinvex functions
Main Article Content
Abstract
In the present paper, we define the class of $(h_1, h_2, h_3)$-preinvex functions on co-ordinates and prove certain new Hermite-Hadamard and Fejér type inequalities for such mappings. As a consequence, we derive analogous Hadamard-type results on convex and s-convex functions in three co-ordinates. We also discuss some intriguing aspects of the associated $H$ function.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] M. W. Alomari and M. Darus, The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates, Int. J. Math. Anal. 2 (13) (2008), 629–638. https://www.m-hikari.com/ijma/ijma-password-2008/ijma-password13-16-2008/darusIJMA13-16-2008-2.pdf Google Scholar
[2] M. Bombardelli and S. Varosanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities, Int. J. Math. Anal. 2 (13) (2008), 629–638. https://doi.org/10.1016/j.camwa.2009.07.073 Google Scholar
[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Belgr.) (NS) 23 (37) (1978), 13–20. http://eudml.org/doc/257486 Google Scholar
[4] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math. 32 (4) (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 Google Scholar
[5] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math. 5 (4) (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 Google Scholar
[6] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (2) (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 Google Scholar
[7] M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl. 2012 (28) (2012), 1–13. https://doi.org/10.1186/1029-242X-2012-28 Google Scholar
[8] M. Matloka, On some Hadamard-type inequalities for (h1, h2)-preinvex functions on the co-ordinates, J. Inequal. Appl. 2013 (1) (2013), 1–12. https://doi.org/10.1186/1029-242X-2013-227 Google Scholar
[9] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (3) (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 Google Scholar
[10] M. A. Noor, K. I. Noor, M. U. Awan, and J. Li, On Hermite-Hadamard Inequalities for h-Preinvex Functions, Filomat 28 (7) (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N Google Scholar
[11] M. E. Ozdemir, M. A. Latif, and A. O. Akdemir, On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, J. Inequal. Appl. 2012 (21) (2012), 1–13. https://doi.org/10.1186/1029-242X-2012-21 Google Scholar
[12] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal. 2 (3) (2008), 335–341. https://dx.doi.org/10.7153/jmi-02-30 Google Scholar
[13] S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (1) (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 Google Scholar