Rough -convergence of sequences in probabilistic normed spaces
Main Article Content
Abstract
In this paper, we have studied the idea of rough
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] C. Alsina, B. Schweizer, and A. Sklar, On the definition of a probabilistic normed space, *Aequationes Mathematicae*, **46** (1993), 91–98. Google Scholar
[2] S. Aytar, Rough statistical convergence, *Numerical Functional Analysis and Optimization*, **29**(3-4) (2008), 291–303. https://doi.org/10.1080/01630560802001064. Google Scholar
[3] A. Aghajani and K. Nourouzi, Convex sets in probabilistic normed spaces, *Chaos, Solitons & Fractals*, **36**(2) (2008), 322–328. https://doi.org/10.1016/j.chaos.2006.06.051. Google Scholar
[4] M. Arslan and E. Dündar, Rough convergence in 2-normed spaces, Bulletin of Mathematical Analysis and Applications, 10(3) (2018), 1–9. Google Scholar
[5] R. Antal, M. Chawla, and V. Kumar, Rough statistical convergence in probabilistic normed spaces, Thai Journal of Mathematics, 20(4) (2022), 1707–1719. Google Scholar
[6] A. K. Banerjee and N. Hossain, On I-convergence of sequences of functions and uniform conjugacy, Journal of Mathematical Analysis, 13(5) (2022), 12–20. Google Scholar
[7] E. Dündar and C. Çakan, Rough I-convergence, Demonstratio Mathematica, 47(3) (2014), 638–651. http://dx.doi.org/10.2478/dema-2014-0051. Google Scholar
[8] E. Dündar, On rough ( I_2 )-convergence of double sequences, Numerical Functional Analysis and Optimization, 37(4) (2016), 480–491. http://dx.doi.org/10.1080/01630563.2015.1136326. Google Scholar
[9] H. Fast, Sur la convergence statistique, Colloquium Mathematicum, 2(3-4) (1951), 241–244. Google Scholar
[10] M. J. Frank, Probabilistic topological spaces, Journal of Mathematical Analysis and Applications, 34(1) (1971), 67–81. Google Scholar
[11] S. Ghosal and M. Banerjee, Effects on rough I-lacunary statistical convergence to induce the weighted sequence, Filomat, 32(10) (2018), 3557–3568. http://dx.doi.org/10.2298/FIL1810557G. Google Scholar
[12] N. Hossain and A. K. Banerjee, Rough I-convergence in intuitionistic fuzzy normed spaces, Bulletin of Mathematical Analysis and Applications, 14(4) (2022), 1–10. Google Scholar
[13] P. Kostyrko, T. Šalát, and W. Wilczyński, I-convergence, Real Analysis Exchange, 26(2) (2000/01), 669–685. Google Scholar
[14] E. P. Klement, R. Mesiar, and E. Pap, Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, 143 (2004), 5–26. https://doi.org/10.1016/j.fss.2003.06.007. Google Scholar
[15] S. Karakus, Statistical convergence on probabilistic normed spaces, Mathematical Communications, 12(1) (2007), 11–23. Google Scholar
[16] V. Kumar, On I and I∗-convergence of double sequences, Mathematical Communications, 12(2) (2007), 171–181. Google Scholar
[17] Ö. Kısi and H. K. Ünal, Rough ( Delta I_2 )-statistical convergence of double sequences in normed linear spaces, Bulletin of Mathematical Analysis and Applications, 12(2) (2020), 1–11. Google Scholar
[18] B. K. Lahiri and P. Das, I and I∗-convergence in topological spaces, Mathematica Bohemica, 130(2) (2005), 153–160. http://dx.doi.org/10.21136/MB.2005.134133. Google Scholar
[19] K. Menger, Statistical metrices, Proceedings of the National Academy of Sciences of the United States of America, 28(12) (1942), 535–537. Google Scholar
[20] M. Mursaleen and A. Alotaibi, I-convergence in random 2-normed spaces, Mathematica Slovaca, 61(6) (2011), 933–940. Google Scholar
[21] M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Mathematica Slovaca, 62(1) (2012), 49–62. http://dx.doi.org/10.2478/s12175-011-0071-9. Google Scholar
[22] P. Malik and M. Maity, On rough convergence of double sequence in normed linear spaces, Bulletin of the Allahabad Mathematical Society, 28(1) (2013), 89–99. http://dx.doi.org/10.1007/s13370-015-0332-9. Google Scholar
[23] P. Malik and A. Ghosh, Rough I-statistical convergence of double sequences in normed linear spaces, Malaya Journal of Mathematics, 7(1) (2019), 55–61. https://doi.org/10.26637/MJM0701/0011. Google Scholar
[24] H. X. Phu, Rough convergence in normed linear spaces, Numerical Functional Analysis and Optimization, 22(1-2) (2001), 199–222. http://dx.doi.org/10.1081/NFA-100103794. Google Scholar
[25] H. X. Phu, Rough continuity of linear operators, Numerical Functional Analysis and Optimization, 23 (2002), 139–146. Google Scholar
[26] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numerical Functional Analysis and Optimization, 24 (2003), 285–301. http://dx.doi.org/10.1081/NFA-120022923. Google Scholar
[27] S. K. Pal, E. Savaş, and H. Çakallı, I-convergence on cone metric spaces, Sarajevo Journal of Mathematics, 9(1) (2013), 85–93. http://dx.doi.org/10.5644/SJM.09.1.07. Google Scholar
[28] S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacet. J. Math. Stat., 42 (6) (2013), 633–640. Google Scholar
[29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1) (1951), 73–74. Google Scholar
[30] A. N. Serstnev, Random normed spaces: Problems of completeness, Kazan. Gos. Univ. Ucen. Zap., 122 (1962), 3–20. Google Scholar
[31] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, New York-Amsterdam Oxford, 1983. Google Scholar
[32] T. Salát, B. C. Tripathy and M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., 28 (2) (2004), 274–286. Google Scholar
[33] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2) (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019 Google Scholar
[34] B. C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n-normed space, Soft Computing, 16 (6) (2012), 1021–1027. https://doi.org/10.1007/s00500-011-0799-8 Google Scholar
[35] O. Talo and Y. Sever, On Kuratowski I-convergence of sequences of closed sets, Filomat, 31 (4) (2017), 899–912. http://dx.doi.org/10.2298/FIL1704899T Google Scholar