Hermite-Hadamard type inequalities for preinvex functions with applications
Main Article Content
Abstract
In this article, we establish new Hermite-Hadamard Type inequalities for functions whose first derivative in absolute value are preinvex. Further, we give some application of our obtained results to some special means of real numbers. Moreover, we discuss several special cases of the results obtained in this paper.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (2) (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 Google Scholar
[2] A. Ben-Israel, and B. Mond, What is invexity?, The ANZIAM Journal. 28 (1) (1986), 1–9. https://doi.org/10.1017/S0334270000005142 Google Scholar
[3] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications. 136 (1) (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 Google Scholar
[4] M.A. Noor, K.I. Noor, and S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics. 7 (1) (2019), 29. https://doi.org/10.3390/math7010029 Google Scholar
[5] S.K. Mishra and G. Giorgio, Invexity and optimization, (Vol. 88). Springer Science and Business Media, (2008). https://doi.org/10.1007/978-3-540-78562-0 Google Scholar
[6] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes mathematicae, 28 (1) (1985), 229–232. https://doi.org/10.1007/BF02189414 Google Scholar
[7] S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, RGMIA research report collection. 3(4) (2000). https://doi.org/10.1016/j.bulsci.2023.103316 Google Scholar
[8] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications. 189 (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 Google Scholar
[9] M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2(2) (2007), 126–131. Google Scholar
[10] Y. Deng, H. Kalsoom and S. Wu, Some new Quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)–preinvex functions, Symmetry (2019). http://dx.doi.org/10.3390/sym11101283 Google Scholar
[11] M.A. Latif, Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarskys mean with applications to means, Adv. Differ. Equ. 371 (2021). https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-021-03517-3 Google Scholar
[12] H.M. Srivastava, Sana Mehrez, and M.S. Sergei, Hermite-Hadamard-type integral inequalities for convex functions and their applications, Mathematics. 10(17) (2022), 31–27. http://dx.doi.org/10.3390/math10173127 Google Scholar
[13] B.Y. Xi and F. Qi, Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 980-438 (2012). https://doi.org/10.1155/2012/980438 Google Scholar
[14] S. Özcan and İ. İscan, Some new Hermite-Hadamard type integral inequalities for the s–convex functions and their applications, J. Inequal. Appl. 201 (2019). https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-019-2151-2 Google Scholar
[15] M. Tariq, S.K. Sahoo, F. Jarad and B. Kodamasingh, Some integral inequalities for generalized preinvex functions with applications, AIMS Mathematics. 6 (2021), 13907–13930. http://dx.doi.org/10.3934/math.2021805 Google Scholar
[16] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics. 775–788 (2001). http://dx.doi.org/10.11650/twjm/1500574995 Google Scholar
[17] M. A. Latif, and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates, Facta Universitatis, Series Mathematics and Informatics. 28(3) (2013), 257–270. Google Scholar
[18] H.M. Srivastava, S.K. Sahoo, P.O. Mohammed, D. Baleanu, and B. Kodamasingh, Hermite–Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, International Journal of Computational Intelligence Systems. 15(1) (2022), p.8. http://dx.doi.org/10.1007/s44196-021-00061-6 Google Scholar
[19] M. B. Khan, S. Treant, M.S. Soliman, K. Nonlaopon and H.G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics. 10(4) (2022), 611. http://dx.doi.org/10.3390/math10040611 Google Scholar
[20] K.K. Lai, J. Bisht, N. Sharma and S.K. Mishra, Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions, Mathematics. 10(2) (2022), 264. http://dx.doi.org/10.3390/math10020264 Google Scholar
[21] K.K. Lai, S.K. Mishra, J. Bisht, and M. Hassan, Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions, Symmetry. 14(4) (2022), 771. http://dx.doi.org/10.3390/sym14040771 Google Scholar
[22] K.K. Lai, S.K. Mishra, and V. Singh, Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications, Symmetry. 15(2) (2023), p.410. http://dx.doi.org/10.3390/sym15020410 Google Scholar
[23] F. Shi, G. Ye, D. Zhao, and W. Liu, Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions, Advances in Difference Equations, 2021(1) (2021), 1–17. https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-03200-z Google Scholar
[24] D. Zhao, T. An, G. Ye, and W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets and Systems. 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 Google Scholar
[25] A. Barani, A. G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, Journal of Inequalities and Applications. (2012), 1–9. http://dx.doi.org/10.1186/1029-242X-2012-247 Google Scholar
[26] M. Z. Sarikaya, H. Bozkurt, and N. Alp, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, arXiv preprint arXiv:1203.4759. http://dx.doi.org/10.1186/1029-242X-2012-247 Google Scholar
[27] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluewer Acad. (1993), 99–133. https://doi.org/10.1137/1036070 Google Scholar
[28] T. Antczak, Mean value in invexity analysis, Nonlinear Analysis: Theory, Methods and Applications. 60(8) (2005), 1473–1484. https://doi.org/10.1016/j.na.2004.11.005 Google Scholar
[29] X.M. Yang, and D. Li, On properties of preinvex functions, Journal of Mathematical Analysis and Applications. 256(1) (2001), 229–241. https://doi.org/10.1006/jmaa.2000.7310 Google Scholar
[30] G.H. Hardy, J.E. Littlewood, G. Pólya and G. Pólya, Inequalities, Cambridge University Press (1952). https://doi.org/10.4236/apm.2013.37078 Google Scholar
[31] D. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, Journal of Mathematical Analysis and Applications. 364(2) (2010), 384–394. https://doi.org/10.1016/j.jmaa.2009.10.057 Google Scholar
[32] P. S. Bullen, D. S. Mitrinović and M. Vasic, Means and their inequalities (Vol. 31), Springer Science and Business Media (2013). https://doi.org/10.1007/978-94-017-2226-1 Google Scholar
[33] P.S. Bullen, Handbook of means and their inequalities, (Vol. 560), Springer Science and Business Media (2003). https://doi.org/10.1007/978-94-017-0399-4 Google Scholar