Common fixed point results via -contraction on -algebra valued metric spaces
Main Article Content
Abstract
In this work, we establish common fixed point results by utilizing a variant of
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math. 3 (1922), 133–181. Google Scholar
[2] S.G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994 ), 183–197. Google Scholar
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), 5–11. Google Scholar
[4] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. 57 (2000), 31–37. Google Scholar
[5] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420. Google Scholar
[6] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc. 136 (4), (2008), 1359–1373. Google Scholar
[7] Y. J. Cho, R. Saadati, S. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl., 61 (2011), 1254–1260. Google Scholar
[8] R.C. Dimri, G. Prasad, Coincidence theorems for comparable generalized non-linear contractions in ordered partial metric spaces, Commun. Korean Math. Soc. 32 (2) (2017), 375–387. Google Scholar
[9] G. Prasad, Fixed point theorems via w-distance in relational metric spaces with an application, Filomat 34(6) (2020), 1889–1898. Google Scholar
[10] G. Prasad, R.C. Dimri, A. Bartwal, Fixed points of Suzuki contractive mappings in relational metric spaces, Rend. Circ. Mat. Palermo, Ser II 69 (2020), 1347–1358. https://doi.org/10.1007/s12215-019-00475-4 Google Scholar
[11] G. Prasad, D. Khantwal, Fixed points of JS-contractive mappings with applications, J. Anal. (2023). https://doi.org/10.1007/s41478-023-00598-z Google Scholar
[12] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012,94, (2012). Google Scholar
[13] D. Wardwoski, N. V. Dung, Fixed points of F-weak contraction on complete metric spaces, Demonstr. Math. 47 (2014). Google Scholar
[14] D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued F contractions and application to functional equations, Fixed Point Theory Appl. 2015, 22, (2015). Google Scholar
[15] I. Altun, G. Minak, H. Dag, Multivalued F-contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (2015), 659–666. Google Scholar
[16] M. Nazam, C. Park, A. Hussain, M. Arshad, J. R. Lee, Fixed point theorems for F -contractions on closed ball in partial metric spaces, J. Comput. Anal. Appl. 27 (2019), 759–769. Google Scholar
[17] Z.H. Ma, L.N. Jiang, H.K. Sun, C∗-algebra valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014, 206, (2014). Google Scholar
[18] Z.H. Ma, L.N. Jiang, C∗-algebra valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2015, 222, (2015). https://doi.org/10.1186/s13663-015-0471-6 Google Scholar
[19] M.E. Ege, C. C. Alaca, C∗-algebra-valued S-metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 67 (2) (2018), 165–177. Google Scholar
[20] N. Mlaike, M. Asim, M. Imdad, C∗-algebra valued partial b-metric spaces and fixed point results with an application, Mathematics 8 (8), (2020). https://doi.org/10.3390/math8081381 Google Scholar
[21] J.U. Maheswari, A. Anbarasan, M. Gunaseelan, V. Parvaneh, H. Bonab, Solving an integral equation via C∗-algebra-valued partial b-metrics, Fixed Point Theory Algorithms Sci Eng 2022, 18 (2022). Google Scholar
[22] W. Tapanyo, W. Ratiphaphongthon, A. Arunchai, Completion of C∗-algebra-valued metric spaces, Thai J. Math., 20 (3), (2022), 1119–1136. Google Scholar
[23] G. Mani, A.J. Gnanaprakasam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed point results in C∗-algebra-valued partial b-metric spaces with related application, Mathematics 11 (5), 1158, (2023) 1–9. Google Scholar
[24] M. Paul, K. Sarkar, K. Tiwary, Some unique common fixed point results on C∗-algebra valued metric space using C∗-class function, Ann. Math. Comput. Sci. 16, (2023), 1–20. Google Scholar
[25] S. Narzary, D. Das, Y.M. Singh, M.S. Khan, S. Sessa, C∗-algebra-valued partial modular metric spaces and some fixed point results, Symmetry 15 (6), 1135, (2023). Google Scholar
[26] X. Qiaoling, J. Lining, Z. Ma, Common fixed point theorems in C∗-algebra valued metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 4617–4627. Google Scholar
[27] D. El. Moutawakil, M. Aamri, Some new common fixed point theorems under strict contraction conditions, J. Math. Anal. Appl. 270 (2002), 181–188. Google Scholar
[28] P. Kumam, W. Sintunavarat, Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space, J. Appl. Math. 2011 (2011). https://doi.org/10.1155/2011/637958 Google Scholar
[29] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 733–735. Google Scholar
[30] G. Jungck, B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3), (1998), 227–238. Google Scholar