A new quarternionic dirac operator on symplectic submanifold of a product symplectic manifold
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] Alekseevsky, D., Marchiafava, S. and Pontecorvo, M., Compatible complex structures on almost quaternionic manifolds, Transactions of the American Mathematical Society, 351 (3),(1999), 997–1014. https://www.jstor.org/stable/117913 Google Scholar
[2] Chern, A., Kn ̈oppel, F., Pedit, F., Pinkall, U. and Schr ̈oder, P.,, March, Finding Conformal and Isometric Immersions of Surfaces, Minimal surfaces: Integrable Systems and visualisation. Springer Proceedings in Mathematics and statistics, 349, (2021), 13–33. https://doi.org/10.1007/978-3-030-68541-6_2 Google Scholar
[3] Crane, K., Pinkall, U. and Schr ̈oder, P., Spin Transformations of Discrete Surfaces, ACM Transactions on Graphics. 30 (4),(2011), 104. https://doi.org/10.1145/2010324.1964999 Google Scholar
[4] Datta, M., Immersions in a symplectic manifold, Proc. Indian Acad. Sci. (Math. Sci.), 108 (2),(1998), 137–149. https://doi.org/10.1007/BF02841547 Google Scholar
[5] Datta, M., Immersions in a manifold with a pair of symplectic forms, Journal of Symplectic geometry, 9 (1) (2011), 11–32. Google Scholar
[6] Haydys, A., Nonlinear Dirac operator and quaternionic analysis, Communications of Mathematical Physics. 281 (2008), 251–261. https://doi.org/10.1007/s00220-008-0445-1 Google Scholar
[7] Haydys, A., Dirac operators in gauge theory, In New ideas in low-dimensional topology edited by L. Kauffman and V.Manturov, volume 56 of Ser. Knots Everything, (2015), 161-188. World Sci. Publ., Hackensack, NJ. https://doi.org/10.1142/9789814630627_0005 Google Scholar
[8] Hoffmann, T. and Ye, Z., A discrete extrinsic and intrinsic Dirac operator, Experimental Mathematics. 31 (3),(2022), 920–935. https://doi.org/10.1080/10586458.2020.1727798 Google Scholar
[9] Joyce, D., Hypercomplex Algebraic Geometry, Quart. J. Math. Oxford, 49,(1998) , 129–162. https://doi.org/10.1093/qmathj/49.2.129 Google Scholar
[10] Joyce, D., A theory of quaternionic algebra with applications to hypercomplex geometry, Quaternionic Structures in Mathematics and Physics, (2001), 143–194. https://doi.org/10.1142/9789812810038_0009 Google Scholar
[11] Liu,H. D., Jacobson, A. and Crane, K., A Dirac Operator for Extrinsic Shape Analysis, Eurographics Symposium on Geometry Processing. 36 (5), (2017), 139–149. https://doi.org/10.1111/cgf.13252 Google Scholar
[12] L. Karp, On the Stoke’s theorem for non compact manifolds, Proceedings of the AMS 82 (3), 487–490, 1981. Google Scholar
[13] Massey, W.S., Obstructions to the existance of almost complex structures, Bull. Amer. Math. Soc..67 (1961), 559–564. Google Scholar
[14] Perez, H. J., A Quaternionic Structure as a Landmark for Symplectic Maps, arXiv preprint, arXiv:1910.13031v2, 2019. https://doi.org/10.48550/arXiv.1910.13031 Google Scholar
[15] Tanisli, M., Kansu, M. E. and Demir, S., Supersymmetric quantum mechanics and euclidean Dirac operator with complexified quaternions, Modern Physics Letters A. 28 (8), (2013), (15 pages). https://doi.org/10.1142/S0217732313500260 Google Scholar
[16] Wang, Y. and Solomon, J., Intrinsic and extrinsic operators for shape analysis, In Handbook of Numerical Analysis 20 (2019), 41–115, Elsevier. https://doi.org/10.1016/bs.hna.2019.08.003 Google Scholar
[17] Widdows, D., Quaternion Algebraic Geometry, D. Phil Thesis. (2000), Oxford University. https://people.maths.ox.ac.uk/joyce/theses/WiddowsDPhil.pdf Google Scholar
[18] Ye, Z., Diamanti, O., Tang, C., Guibas, L. and Hoffmann, T., A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing, Eurographics Symposium on Geometry Processing. 37 (5) (2018), 93–106. https://doi.org/10.1111/cgf.13494 Google Scholar